Hi Folks,
I have daily data that i would like to convert to weekly totals. The aggregation variable is transaction_amount and the starting date Varies. Say for instance transactions begun on 12/22/2021 11:36:00 AM, the end of the week should be t+7 where t is the beginning date(12/22/2021 11:36:00 AM). See attached csv file with sample data.
I have daily data that i would like to convert to weekly totals. The aggregation variable is transaction_amount and the starting date Varies. Say for instance transactions begun on 12/22/2021 11:36:00 AM, the end of the week should be t+7 where t is the beginning date(12/22/2021 11:36:00 AM). See attached csv file with sample data.
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input str16 transaction_date float transaction_amount "12/22/2021 11:36" 1000 "12/22/2021 12:09" 1000 "12/22/2021 17:06" 133.44 "12/23/2021 18:17" 133.27 "12/23/2021 18:17" 667.21 "12/23/2021 18:21" 4003.32 "12/23/2021 18:22" 667.22 "12/23/2021 18:23" 1334.44 "12/26/2021 5:25" 100 "12/27/2021 10:56" 5000 "12/27/2021 10:58" 5000 "12/28/2021 15:28" 5 "12/29/2021 13:10" 1200 "12/29/2021 14:02" 2500 "12/30/2021 13:33" 5000 "1/3/2022 10:13" 1000 "1/4/2022 2:09" 1000 "1/4/2022 15:37" 194.61 "1/6/2022 21:00" 676.26 "1/18/2022 10:01" 1046.12 "1/31/2022 12:52" 5 "1/31/2022 12:56" 500 "1/31/2022 12:56" 500 "1/31/2022 12:56" 5000 "1/31/2022 13:07" 1000 "1/31/2022 13:08" 676.76 "1/31/2022 13:08" 677.01 "1/31/2022 13:09" 2421 "1/31/2022 13:10" 678.2 "1/31/2022 13:14" 1000 "1/31/2022 13:14" 1000 "1/31/2022 13:14" 1363.4 "1/31/2022 13:14" 1362.74 "1/31/2022 13:14" 2393.45 "1/31/2022 13:14" 2463.5 "1/31/2022 13:14" 4786.9 "2/8/2022 8:59" 5000 "2/8/2022 12:11" 5000 "2/8/2022 12:12" 1000 "2/8/2022 12:14" 5000 "3/10/2022 13:26" 922.37 "6/23/2022 12:53" 1046.12 "9/13/2022 19:53" 1 "9/15/2022 9:48" 69.95 "9/15/2022 9:57" 69.84 "9/15/2022 10:31" 575.71 "9/15/2022 10:44" 575.71 "9/15/2022 11:12" 1 "9/15/2022 11:15" 1 "9/22/2022 13:50" 20 "9/22/2022 13:51" 20 "9/22/2022 13:51" 2 "9/22/2022 13:56" 5.67 "9/22/2022 14:05" 510 "9/22/2022 14:11" 510 "9/22/2022 14:23" 226.67 "9/22/2022 16:12" 563.23 "9/22/2022 20:49" 1.13 "9/23/2022 17:15" 11.66 "9/23/2022 17:18" 11.66 "9/29/2022 13:15" 1 "9/29/2022 13:19" 1000 "9/29/2022 13:26" 1000 "9/29/2022 13:32" 1000 "9/29/2022 15:01" 21.96 "9/29/2022 15:08" 21.96 "9/29/2022 15:09" 21.96 "10/3/2022 8:44" 2913.71 "10/3/2022 8:48" 2090.02 "10/3/2022 9:04" 498.69 "10/3/2022 12:45" 11.22 "10/3/2022 15:31" 110 "10/3/2022 16:33" 648 "10/4/2022 16:14" 29.93 "10/5/2022 2:12" 5000 "10/5/2022 2:44" 3000 "10/5/2022 2:44" 3000 "10/5/2022 7:44" 613.64 "10/5/2022 8:19" 610.27 "10/5/2022 8:31" 19.88 "10/5/2022 11:06" 300 "10/5/2022 11:29" 21.87 "10/5/2022 12:18" 2977.18 "10/5/2022 12:27" 2977.18 "10/6/2022 11:07" 1.13 "10/6/2022 15:37" 111.98 "10/7/2022 9:23" 145.52 "10/7/2022 11:19" 5.67 "10/8/2022 19:41" 22.17 "10/10/2022 14:22" 200 "10/10/2022 14:26" 19.88 "10/10/2022 14:27" 1.13 "10/10/2022 19:47" 11.06 "10/11/2022 14:07" 100 "10/11/2022 14:20" 11.09 "10/12/2022 9:13" 150 "10/12/2022 11:50" 10.97 "10/12/2022 11:52" 9.88 "10/12/2022 11:56" 11.08 "10/12/2022 11:57" 150 end
Comment