Dear all
I am dealing with a quarterly panel dataset – from Oct 2019 to Des 2020 – for workers, and I want to study the effect of a covid_19 closure in labour market. So I have five quarters in my datasets: Oct to Des 2019, the first quarter (the only quarter before closure in the labour market as well), and the other four quarters, all of them the period after closure. My question is: How can I separate my dataset to be pre and post period based on quarter and variable FLEXW7?
I would like to get the untreated group ( Oct to Des 2019 ) and the treated group ( Jan to Des 2020) based on people working in Zero hours contracts ( FLEXW7)
NOTE :
FLEXW7 is a group of works which indicate 1 = if working zero hours contracts 0 = not working zero hours contracts
Here is the sample of data :
I tried to create a dummy variable
However, that did not work when I needed to produce a Histogram graph to compare people working in zero-hours contracts pre and post period.
I appreciate getting any suggestions to solve this.
I am dealing with a quarterly panel dataset – from Oct 2019 to Des 2020 – for workers, and I want to study the effect of a covid_19 closure in labour market. So I have five quarters in my datasets: Oct to Des 2019, the first quarter (the only quarter before closure in the labour market as well), and the other four quarters, all of them the period after closure. My question is: How can I separate my dataset to be pre and post period based on quarter and variable FLEXW7?
I would like to get the untreated group ( Oct to Des 2019 ) and the treated group ( Jan to Des 2020) based on people working in Zero hours contracts ( FLEXW7)
NOTE :
FLEXW7 is a group of works which indicate 1 = if working zero hours contracts 0 = not working zero hours contracts
Here is the sample of data :
Code:
* Example generated by -dataex-. For more info, type help dataex clear input double PERSID byte(quarter SEX Inde07m FLEXW7) 10493040101 4 2 99 . 10493040101 5 2 99 . 10493040101 6 2 99 . 10493040101 7 2 99 . 10694020101 4 2 99 . 10694020101 5 2 99 . 10694020101 6 2 99 . 10694020101 7 2 99 . 10694020101 8 2 99 . 10694020102 4 1 99 . 10694020102 5 1 99 . 10694020102 6 1 99 . 10694020102 7 1 99 . 10694020102 8 1 99 . 10792030101 5 2 99 . 10792030101 6 2 99 . 10793010101 4 2 8 2 10793010101 5 2 8 2 10793010101 6 2 8 2 10793010101 7 2 8 2 10794010101 4 1 5 2 10794010101 5 1 5 2 10794010101 6 1 5 2 10794010101 7 1 5 2 10794010101 8 1 5 2 10794010102 4 2 5 2 10794010102 5 2 5 2 10794010102 6 2 5 2 10794010102 7 2 5 2 10794010102 8 2 5 2 10993020101 4 2 8 2 10993020101 5 2 8 . 10993020101 6 2 8 2 10993020101 7 2 99 . 10993020102 4 1 8 2 10993020102 5 1 8 2 10993020102 6 1 8 2 10993020102 7 1 8 2 11091010101 4 2 8 2 11091010101 5 2 8 2 11093030101 4 2 99 . 11093030101 5 2 99 . 11093030101 6 2 99 . 11093030101 7 2 99 . 11094010101 4 1 8 2 11094010101 5 1 99 . 11094010101 6 1 99 . 11094010101 7 1 99 . 11094010101 8 1 99 . 11094010102 4 2 8 2 11094010102 5 2 8 2 11094010102 6 2 8 2 11094010102 7 2 8 2 11094010102 8 2 8 2 11291020101 4 2 99 . 11291020101 5 2 99 . 11292020101 5 1 5 2 11292020101 6 1 5 2 11294030101 4 2 8 2 11294030101 5 2 8 2 11294030101 6 2 8 2 11294030101 7 2 8 2 11294030101 8 2 8 2 11294030102 4 1 99 . 11294030102 5 1 99 . 11294030102 6 1 99 . 11294030102 7 1 99 . 11294030102 8 1 99 . 20191020101 4 1 8 2 20191020101 5 1 8 2 20191020102 4 1 5 2 20191020102 5 1 5 2 20191040101 4 2 9 2 20191040101 5 2 9 2 20193010102 4 2 99 . 20193010102 5 2 99 . 20193010102 6 2 99 . 20193010102 7 2 99 . 20293010101 4 2 99 . 20293010101 5 2 99 . 20293010101 6 2 99 . 20293010101 7 2 99 . 20294040101 4 2 5 2 20294040101 5 2 5 2 20294040101 6 2 5 2 20294040101 7 2 5 2 20294040101 8 2 5 2 20493010101 4 2 99 . 20493010101 5 2 99 . 20493010101 6 2 99 . 20493010101 7 2 99 . 20494030101 4 2 5 2 20494030101 5 2 5 2 20494030101 6 2 5 2 20494030101 7 2 5 2 20494030101 8 2 5 2 20494030102 4 1 8 2 20494030102 5 1 8 2 20494030102 6 1 8 2 20494030102 7 1 8 2 end label values quarter quarter label def quarter 4 "Oct-Des 2019", modify label def quarter 5 "Jan-Mar 2020", modify label def quarter 6 "April-June 2020", modify label def quarter 7 "July-Sep 2020", modify label def quarter 8 "Oct-Des 2020", modify label values SEX SEX label def SEX 1 "Male", modify label def SEX 2 "Female", modify label values Inde07m Inde07m5 label def Inde07m5 5 "G,I -Distribution, hotels and restaurants", modify label def Inde07m5 8 "O,P,Q - Public admin, education and health", modify label def Inde07m5 9 "R,S,T,U - Other services", modify label values FLEXW7 FLEXW75 label def FLEXW75 2 "No", modify
I tried to create a dummy variable
Code:
gen byte ZHC_post = FLEXW7 == 1 & quarter>=5 gen byte ZHC_pre = FLEXW7 == 1 & quarter==4
I appreciate getting any suggestions to solve this.
Comment