Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Odd Map - Selected USA cities

    To all STATA users,

    I am new to making maps so I need some help to make this happen ( I run successfully the spmap example).

    What I need to do is to plot the USA map highlighting selected cities (30) and its average freight rate.

    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input byte kma str31 NAME str2 ST double(price_V price_R distance_V distance_R distance_F)
     1 "Phoenix"        "AZ" 1.9528870292887024   2.39418410041841 1210.1204184100422  1250.167615062762  599.8294560669452
     2 "Los Angeles"    "CA" 2.3603765690376566 3.0724686192468615 1804.7005857740605  1615.934225941423 1006.4151464435139
     3 "Ontario"        "CA" 2.4219665271966524 3.3889121338912136 1670.3484518828452  1396.542552301254  736.5871548117153
     4 "Denver"         "CO" 1.3128870292887032 1.6721757322175719  965.5429288702936 1021.2196234309621   701.215941422594
     5 "Lakeland"       "FL"   1.18205020920502  1.668117154811716 1013.9206276150626 1072.9160251046028  615.5800418410045
     6 "Atlanta"        "GA"  2.058577405857741 2.5402092050209215  852.7332635983265  707.1748953974896  553.9581171548117
     7 "Chicago"        "IL" 2.7413389121338922 3.6408786610878647  795.4190376569044  747.5263179916317  537.6868619246859
     8 "Joliet"         "IL"  2.762803347280334 3.7043514644351467  751.3896234309631  694.1074476987447  473.4064016736401
     9 "Indianapolis"   "IN"  2.538912133891214  2.999623430962343  700.8556903765692  744.4402510460252 382.61050209205035
    10 "Lexington"      "KY"  2.547405857740586  2.820334728033472  701.8749790794977  681.9120083682006 453.34652719665263
    11 "Grand Rapids"   "MI" 2.4091631799163165 3.0076987447698755  774.3450627615061  698.7157740585774 341.13941422594127
    12 "Cape Girardeau" "MO" 2.8252301255230137 3.3221757322175733  532.7318410041842  556.3044572927562 352.07538928171584
    13 "Kansas City"    "MO"  2.163807531380752  2.778912133891212   795.053472803347  843.9476150627613  486.8151882845189
    14 "St. Louis"      "MO" 2.6475732217573213 2.9923849372384925  681.4937656903766  503.4105439330545 417.10790794979084
    15 "Charlotte"      "NC"   2.16255230125523 2.6012552301255236  883.9582008368197  746.6806276150629 497.91046025104606
    16 "Elizabeth"      "NJ" 2.0728033472803347 2.9602092050209214 1015.2129707112975  871.6861924686197  455.9187866108784
    17 "Cleveland"      "OH"  2.313221757322176 3.2135983263598336  787.5803765690381  565.1951046025106  533.4076569037654
    18 "Columbus"       "OH" 2.4802510460251046 3.1242259414225946  763.4554811715482   668.732510460251  430.4138075313811
    19 "Toledo"         "OH" 2.4676569037656906  2.861841004184101  705.3012552301252  649.0774476987448 340.24004184100414
    20 "Medford"        "OR" 2.0425941422594147 2.4111297071129703  674.8842259414222  556.0107478619822  623.5564435146445
    21 "Allentown"      "PA" 2.0987029288702925 3.2071129707112966  885.9850627615062  715.5852719665269  427.0093723849373
    22 "Harrisburg"     "PA" 2.1538912133891213 3.4218410041840994  814.9279079497913  582.6354811715481  570.3993305439327
    23 "Greenville"     "SC"  2.185020920502092  2.759246861924686  759.1958158995822  598.3794560669457 432.55619246861926
    24 "Memphis"        "TN"  2.412259414225942  2.836569037656904  779.9539330543935  726.0156485355651  514.1379916317992
    25 "Dallas"         "TX"  1.868870292887029 2.6724267782426776  978.5201255230122  894.3630543933045  735.4059414225945
    26 "Fort Worth"     "TX" 1.8744351464435145 2.6941422594142255  961.8895815899579  898.2823012552305  731.4466527196652
    27 "Houston"        "TX" 1.8789539748953983 2.2630543933054406 1059.3253974895397  702.3247698744768  939.6071966527189
    28 "Salt Lake City" "UT" 1.7731799163179922 2.2032635983263593  1015.289288702928  856.6120083682008  692.6344351464431
    29 "Green Bay"      "WI"  2.529707112970713 3.1435983263598315  804.4558577405857  784.2226778242679  428.3644769874473
    30 "Milwaukee"      "WI"  2.684979079497907 3.2616736401673627  757.0217573221755  858.8495815899583  398.4223849372387
    end
    Thus, I got the following .shp and .dbf files:USA_Major_Cities.shp and USA_Major_Cities .dbf available at https://hub.arcgis.com/datasets/esri....479736%2C4.65.

    This is my code:
    Code:
    ** Build maps
    
    cls
    clear all
    
    * Assign a working directory
    
    cd "C:\Users\Max\Desktop\Max\Artigos\Elasticity_Freight\stata"
    
    *There are three files associated with a map: a .shp shape file, a .dbf dBASE file, and an .shx index file. 
    *
    * Translate necessary files into a format usable by Stata with the shp2dta command. 
    * Doing so creates two .dta datasets: counties and cntycoord. 
    clear
    shp2dta using USA_Major_Cities.shp, ///
                    database(Cities) coordinates(citycoord) genid(id) replace
                    
    use Cities, clear
    describe
    
    sort ST NAME
    
    * Merge average price dta file with Cities.dta file. 
    use "C:\Users\Max\Desktop\Max\Artigos\Elasticity_Freight\stata\map_stats_mean.dta", clear
    merge 1:m NAME ST using "Cities.dta"
    
    * keep only matched database
    drop if _merge!=3
    drop _merge
    
    spmap price_V using citycoord, id(id) fcolor(Blues)
    The resulting map doesn't look like the USA.

    Any help, I appreciate it!!!

    Tank you all!!
Working...
X