Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Predicted outcome correlated (?) with regression residuals

    I am using -reghdfe- command with the , residuals() option. After the estimation is outputted, I predict the outcome variable with -predict , xbd-

    Somehow, when I plot the predicted values against the residuals I see a strong negative relationship. I am not sure why as, by construction, we should expect predicted values to be uncorrelated with regression residuals. I am not sure what I am missing.

    Below is a random sample of data. My outcome (y) is a measure between 0 and 1. The independent variables (x1-x11) are either shares, categorical, or continuous variables.

    Code:
    clear
    input byte x10 int x11 byte(x9 x7 x6 x5 x8) float(x1 x2 x3 x4 y)
    1  1 1 0 0 0 54  .5263158          0  51.78947   .8947368   .5882353
    0  9 1 1 1 0 59  .6315789   .8421053  46.52632   .6315789        .15
    0 50 1 0 1 0 48         1   .3333333 36.666668   .3333333  .08695652
    0 51 0 0 0 0 29         0          0        60          0          1
    0 17 0 1 1 1 55       .72        .76      50.2        .16   .5720078
    1 22 0 0 0 0 74  .5833333   .4166667     43.75   .3333333          0
    1 21 1 0 1 1 44  .8695652   .4583333  40.91667   .4166667  .25576082
    0 30 0 0 1 1 33  .6944444   .8611111  44.44444   .1388889  .28941944
    1  0 1 0 0 0 43  .6521739   .2173913  41.13044   .7391304  .50441176
    0 41 0 0 0 0 75        .8   .2631579        46         .1   .1608839
    1 23 0 0 1 1 33        .4          0      43.5         .4  .20363636
    0 57 0 1 1 1 31        .8         .2      38.6         .6  .08099548
    1 36 0 1 1 1 56  .8461539   .4230769  44.42308  .53846157  .27968207
    0 62 1 0 1 1 33 .05882353  .26666668  47.58823   .1764706  .12831196
    0 71 0 0 1 1 36        .6         .1        33         .5  .22727273
    0 57 1 0 0 0 41  .6071429  .26666668 33.966667   .4666667   .3782748
    0 12 0 0 0 0 62         0          0        28          0   .1818182
    1 32 1 0 0 0 41 .54285717         .4  45.08823  .25714287  .25668496
    1  0 1 0 0 0 50  .4878049   .4285714  48.52381   .6904762   .2142857
    1 20 1 0 1 1 67      .625 .032258064  40.28125        .75          1
    0  9 0 1 1 1 40  .8484849  .24242425  35.47059 .029411765   .3019737
    1 44 0 1 1 1 57        .5         .4      45.8          0  .50032127
    1 19 1 0 1 0 59   .680851  .14432989  43.47959  .29591838  .02603046
    1 17 0 1 0 0 64  .2142857   .4285714  40.85714   .2142857         .5
    1 36 0 0 0 0 36  .9318182 .022727273 33.727272  .27272728  .50244087
    0 57 1 1 0 0 42  .2857143   .2142857      53.2         .4   .6139038
    0  1 1 0 1 0 25  .4722222  .17714286  37.67442   .4659091    .467557
    1 32 0 1 1 1 55      .625       .125    49.375       .625          0
    1 38 0 0 0 0 40  .3787879   .2153846  44.72308   .1846154  .56609195
    1  3 0 0 0 0 76 .16666667          0      53.5  .16666667          0
    1 68 0 0 1 1 33  .9285714 .071428575  41.92857   .6428571  .09444445
    0 13 0 0 1 1 40         1          0  40.14286          0   .1568661
    1 30 0 0 0 0 77        .5  .16666667        49   .3333333          0
    1 59 0 0 1 1 42  .3571429          0  46.85714   .4285714   .3333333
    1 19 1 0 0 0 36  .6551724   .3103448  40.68966   .7241379          0
    1 33 1 0 1 1 31  .5555556   .3333333  38.33333   .3333333          0
    1 28 1 1 1 1 32  .6304348   .5217391 32.565216   .7826087   .3465563
    1  0 1 1 0 0 38  .5555556 .029411765  39.74286   .7142857  .52568924
    1 23 0 0 0 0 50  .5217391   .6304348  43.13044  .26086956  .07692308
    1 28 1 0 1 1 30  .8461539          0 37.346153   .5769231    .334188
    1  0 0 0 0 0 46       .75          0    43.625       .625          1
    1 57 0 0 1 1 42  .3333333          0        53          0   .4334689
    1 36 1 0 1 1 50  .5714286   .0882353  47.26471   .5588235   .6126241
    0 80 0 0 0 0 46 .44871795 .006451613  42.55484   .3612903  .15776224
    1 16 1 0 1 1 36  .6818182  .13636364 37.454544   .8181818  .26440966
    1 72 0 0 1 0 26  .3538462  .22222222  43.74603  .26984128         .6
    0 62 0 0 0 0 45 .29411766      .0625  49.05882  .29411766   .3614719
    0  2 0 1 1 1 40      .625   .4285714     47.25        .25        .68
    1 34 0 0 1 1 60  .7692308          0  47.19231  .03846154   .2602126
    1 21 0 1 1 1 40  .7105263   .6216216 34.027027   .6486486   .1746231
    1 75 1 0 1 1 32  .6785714   .2413793  39.62069   .1724138 .073525034
    0  0 1 0 0 0 46  .5714286          0        52          1      .4375
    1 18 1 0 1 0 28 .57894737   .1794872  38.82051   .6153846   .3151182
    1 51 0 1 1 1 37  .8695652   .7555556      36.2   .7333333  .07427717
    0 64 0 0 0 0 67  .7222222  .23076923  47.51282  .15384616  .16756584
    1 24 1 1 0 0 49  .4583333         .5    45.625        .25 .030253837
    0 39 0 0 0 0 36      .875  .14285715    36.625       .375  .27646592
    1 83 0 0 0 0 56  .5882353   .1764706  50.35294  .05882353 .072463766
    1 20 1 0 1 1 37  .3050847   .2142857  48.87719  .46551725   .4525482
    0 57 0 0 1 1 36  .7058824   .2352941  36.38889  .22222222   .6969348
    1  0 1 0 1 1 37        .3        .25     46.25        .55   .6430992
    0 66 1 0 0 0 45  .3230769  .22222222  46.65625        .25   .3028898
    0 45 1 0 1 1 31  .3043478          0  49.04348   .4347826  .18554625
    1 25 1 0 1 0 25  .3333333   .1632653 35.408165   .6326531  .26354167
    1 44 1 0 0 0 35  .2857143 .071428575  48.14286   .4642857   .2323292
    0 92 0 1 1 1 56  .6351351   .8943662   48.3169  .14788732  .29436913
    1  2 1 1 1 1 41  .7142857   .8571429  43.97143   .7428572   .4666667
    1 39 1 0 0 0 47        .7  .26666668  44.48276  .53333336   .3899566
    1 35 0 0 0 0 38  .7162162  .02702703 33.905407   .2837838   .3087257
    1 86 0 0 0 0 68  .6666667   .6666667  43.33333          0          0
    1 32 1 1 1 1 29  .9333333   .8666667 35.866665   .4666667   .4693878
    1 58 0 1 1 0 36  .6883117   .8552632  37.05263  .27631578          0
    1  2 0 1 0 0 51  .6666667   .6666667  44.41667  .08333334  .23710424
    1  0 0 0 1 0 29         0          0      50.2         .4   .7777778
    0 55 1 0 0 0 47      .125  .06666667  44.57143  .26666668   .6597222
    1 24 0 0 0 0 58         0          0      53.2         .4          0
    0 84 1 0 1 1 41  .8163266        .16     45.78        .12   .2039952
    0 21 0 0 0 0 36  .4285714 .071428575 37.357143   .7857143   .4722222
    0 52 0 1 1 1 36  .6363636   .6521739  42.17391  .04347826  .07777778
    1 43 0 0 0 0 67      .125       .625    58.375       .125          0
    1 31 1 0 1 1 41  .8448276   .1754386  43.54237   .4237288  .05888571
    0 50 0 1 1 0 27 .58536583   .3373494   48.3253  .19277108   .3475826
    0 26 0 1 0 0 43       .64        .25        39          0   .2777778
    1 80 0 0 1 1 47         1          0        43          0          0
    0 52 0 0 1 1 31  .3148148  .16666667  43.05556  .14814815   .3966942
    0 47 1 1 0 0 27  .4615385   .3076923  48.23077          0  .08333334
    0  1 0 0 1 1 55      .425   .3809524  52.92857  .16666667   .3464052
    0 52 0 0 1 1 31  .7352941  .04477612  36.41791   .1641791   .4180558
    0 43 0 0 1 1 27  .6842105   .2777778 34.864864   .4054054   .4328156
    1 81 1 1 0 0 37 .08333334   .4166667  54.08333  .08333334   .3333333
    0 31 0 0 1 1 46  .7333333  .27586207      39.2 .033333335   .3650794
    0 63 0 0 1 1 47  .7368421  .15789473  40.89474  .15789473   .4089053
    1  0 0 1 1 1 50 .22222222   .3333333  56.88889   .5555556  .27586207
    0 62 1 1 1 1 33  .6506024  .58536583  42.78049   .2195122  .20441154
    0 65 0 0 1 1 45 .47887325  .11764706 36.766422   .3956835   .3669803
    1 25 1 0 1 1 37  .9473684          0  38.84211   .8947368   .4285714
    1 84 1 0 0 0 47  .6229508  .11111111  40.88525    .296875   .4164711
    0 59 0 0 1 1 30  .6285715  .34285715  43.37143   .2857143   .6478174
    1 77 0 1 1 1 35  .6521739  .26086956  40.95652          0   .4347826
    0 53 0 0 0 0 67 .08333334          0 36.416668        .25         .5
    end
    My code is
    Code:
    reghdfe y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11, residuals(RES)
        
    predict Y_HAT, xbd
        
    scatter Y_HAT RES
    Below is the output of the scatterplot for the sampled data. Because the sample is quite small (100obs), visual interpretation is not very straightforward. For this reason, also copied bellow the plot that comes out when I use my entire data (15M obs).




    Although I can see a clear negative relationship - which for me seems (very) linear. However, when I add the linear prediction (with command -lfit-), it outputs a flat line. I am very puzzled - isn't there a negative correlation? Is this some higher order relationship? Is it because my dependent variable is a share?
    Click image for larger version

Name:	yhat_res_alldata_line.png
Views:	1
Size:	55.0 KB
ID:	1701403



    Attached Files
    Last edited by Paula de Souza Leao Spinola; 13 Feb 2023, 06:21.
Working...
X