Hello,
Currently, I am using qreg in Stata 15.1
My data looks like:
I ran the following command:
And got these results:
I wanted to ask why I am getting these types of results!
Thank you very much!
Currently, I am using qreg in Stata 15.1
My data looks like:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input long familyid int Year float(q childx ratio) byte(moth_edu fath_edu) 2545665 2013 212 0 .59322035 5 7 2546785 2013 212 0 1.516129 8 4 2546905 2013 212 0 .5555556 7 8 2547465 2013 212 0 .6 6 6 2547935 2013 212 0 .9705882 4 5 2547995 2013 212 0 1.1184211 4 4 2548115 2013 212 0 .4375 4 5 2548145 2013 212 2308.9746 .8510638 7 4 2548355 2013 212 0 .7435898 4 2 2548545 2013 212 2963.038 .7894737 7 4 2548625 2013 212 0 .18487395 5 8 2548665 2013 212 0 .24671906 4 7 2548715 2013 212 0 .6923077 4 5 2549115 2013 212 0 1.368421 7 6 2549795 2013 212 0 .6071429 2 2 2549965 2013 212 10140.174 1.6666666 7 7 2550275 2013 212 0 1.945946 8 7 2550425 2013 212 0 .8837209 6 5 2550635 2013 212 790.1434 .6041667 5 5 2551585 2013 212 7901.434 .6363636 4 5 2551875 2013 212 0 .4022988 7 8 2552265 2013 212 0 .8166667 4 4 2552495 2013 212 0 2.5 7 7 2552715 2013 212 0 .875 5 4 2553825 2013 212 7901.434 .5625 4 2 2554325 2013 212 5425.651 .85 8 4 2554425 2013 212 0 .50605714 7 7 2554815 2013 212 0 .875 5 5 2555075 2013 212 0 .9846154 5 5 2555235 2013 212 0 .4615385 4 4 2555345 2013 212 0 .9649123 8 7 2555415 2013 212 10535.245 .45 6 6 2556405 2013 212 0 .16977993 7 7 2556445 2013 212 0 1 4 5 2556765 2013 212 0 1.0630273 7 7 2557095 2013 212 0 1.1555556 5 5 2557185 2013 212 0 1.4945405 4 7 2557215 2013 212 0 .8266667 7 7 2557425 2013 212 5618.797 1.054054 3 4 2557465 2013 212 285.32956 .7674419 6 4 2557485 2013 212 702.3497 .4074718 7 8 2557525 2013 212 0 .3333333 5 5 2557905 2013 212 0 .6195208 7 8 2559085 2013 212 0 .7962963 8 8 2560255 2013 212 2809.399 .8333333 8 4 2560495 2013 212 0 .8571429 4 4 2560905 2013 212 0 .6 4 7 2562045 2013 212 5671.474 1.0403662 7 4 2562345 2013 212 0 .25 3 8 2562475 2013 212 9657.309 .44615385 8 8 2562745 2013 212 0 .6896552 5 3 2562835 2013 212 0 .3395062 7 4 2563335 2013 212 10500.128 1.8 7 4 2563535 2013 212 9218.34 .8166667 7 7 2563545 2013 212 0 1.3793104 8 8 2563715 2013 212 0 .9943978 8 2 2564185 2013 212 0 .3333333 7 8 2564515 2013 212 0 1.25 5 4 2564845 2013 212 0 1.125 3 5 2565255 2013 212 3511.7485 .75 2 2 2565945 2013 212 0 1.5 7 5 2566475 2013 212 0 1 8 8 2566965 2013 212 0 .5011765 7 6 2567575 2013 212 0 .6666667 5 7 2567665 2013 212 4828.6543 4.428387 7 4 2567975 2013 212 0 .301831 8 8 2568165 2013 212 0 2.8 7 6 2568625 2013 212 0 .4783773 4 4 2569045 2013 212 0 1.1944444 5 6 2569185 2013 212 0 .1810986 7 7 2569265 2013 212 2107.049 .6625 7 7 2569535 2013 212 0 .6666667 4 4 2570155 2013 212 0 .8387097 4 5 2571045 2013 212 1053.5245 .8333333 7 7 2571235 2013 212 3072.78 1.0857143 7 7 2571275 2013 212 0 .6896552 7 7 2571655 2013 212 0 .6153846 8 7 2571735 2013 212 0 1.0833334 4 4 2571875 2013 212 0 1.1428572 5 4 2572495 2013 212 0 1.0788236 8 6 2573035 2013 212 438.9686 .4716109 8 8 2573575 2013 212 0 1.1111112 8 8 2574385 2013 212 2194.8428 .12222222 7 7 2575355 2013 212 0 .8924731 7 4 2575465 2013 212 0 1.1290323 8 7 2575585 2013 212 0 1 4 5 2575775 2013 212 0 2.3428571 5 5 2576205 2013 212 0 .53846157 4 5 2576615 2013 212 0 1.2121212 6 4 2576785 2013 212 0 .8857143 7 7 2577005 2013 212 0 .88 5 5 2577275 2013 212 15363.9 1 8 8 2578175 2013 212 1755.8743 .680851 7 6 2578565 2013 212 0 .875 7 4 2578805 2013 212 0 .4285714 6 8 2579084 2013 212 7901.434 .5555556 7 6 2579375 2013 213 0 .9166667 2 4 2579445 2013 213 0 .9285714 7 8 2579804 2013 212 0 .8076923 4 4 2579805 2013 213 0 1.08 4 4 end format %tq q
Code:
qreg childx ratio , quantile (0.25)
Code:
. qreg childx ratio , quantile (0.25) Iteration 1: WLS sum of weighted deviations = 10204047 Iteration 1: sum of abs. weighted deviations = 11206464 Iteration 2: sum of abs. weighted deviations = 10197148 Iteration 3: sum of abs. weighted deviations = 5805605.2 Iteration 4: sum of abs. weighted deviations = 5805605.2 Iteration 5: sum of abs. weighted deviations = 5805605.2 .25 Quantile regression Number of obs = 13,076 Raw sum of deviations 5805605 (about 0) Min sum of deviations 5805605 Pseudo R2 = 0.0000 ------------------------------------------------------------------------------ childx | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- ratio | 0 (omitted) _cons | 0 (omitted) ------------------------------------------------------------------------------ .
I wanted to ask why I am getting these types of results!
Thank you very much!
Comment