Hi all,
I am using Stata 14. I am trying to analyze longitudinal data from a cohort study where the same subjects are measured at three different time points (ages 15, 18 and 25 years). To allow for departures from linearity, I am considering a model with quadratic trends. Unfortunately I cannot interpret the results. Here is the code and results:
WHR - waist to hip ratio
kohort - birth cohort
aeg - time
sugu - sex
kood - ID
If anyone can help or point to a good reference (have not found anything appropriate this far), I would be eternally grateful!
Urmeli
I am using Stata 14. I am trying to analyze longitudinal data from a cohort study where the same subjects are measured at three different time points (ages 15, 18 and 25 years). To allow for departures from linearity, I am considering a model with quadratic trends. Unfortunately I cannot interpret the results. Here is the code and results:
WHR - waist to hip ratio
kohort - birth cohort
aeg - time
sugu - sex
kood - ID
Code:
mixed WHR i.kohort##c.aeg##c.aeg if sugu ==2|| kood: , noconst residuals(unstructured, t(aeg)) stddev reml
Code:
Obtaining starting values by EM: Performing gradient-based optimization: Iteration 0: log restricted-likelihood = 2621.9848 (not concave) Iteration 1: log restricted-likelihood = 2817.847 Iteration 2: log restricted-likelihood = 2854.2901 Iteration 3: log restricted-likelihood = 2858.196 Iteration 4: log restricted-likelihood = 2858.2035 Iteration 5: log restricted-likelihood = 2858.2035 Computing standard errors: Mixed-effects REML regression Number of obs = 1,602 Group variable: kood Number of groups = 655 Obs per group: min = 1 avg = 2.4 max = 3 Wald chi2(5) = 248.23 Log restricted-likelihood = 2858.2035 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------------ WHR | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------------+---------------------------------------------------------------- 2.kohort | .134359 .05627 2.39 0.017 .0240719 .2446461 aeg | .0238618 .0041599 5.74 0.000 .0157085 .0320152 | kohort#c.aeg | 2 | -.0170974 .0058537 -2.92 0.003 -.0285705 -.0056243 | c.aeg#c.aeg | -.0005523 .000103 -5.36 0.000 -.000754 -.0003505 | kohort#c.aeg#c.aeg | 2 | .0004883 .000145 3.37 0.001 .0002042 .0007725 | _cons | .4994664 .0400719 12.46 0.000 .420927 .5780058 ------------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ kood: (empty) | -----------------------------+------------------------------------------------ Residual: Unstructured | sd(e15) | .0370384 .0010755 .0349892 .0392075 sd(e18) | .0444294 .0013792 .0418069 .0472165 sd(e25) | .056315 .0017583 .0529721 .0598688 corr(e15,e18) | .5656019 .0306453 .5025527 .6226668 corr(e15,e25) | .4291414 .0360977 .3558472 .4971886 corr(e18,e25) | .6089058 .0305249 .5456038 .6652989 ------------------------------------------------------------------------------ LR test vs. linear model: chi2(5) = 472.44 Prob > chi2 = 0.0000 Note: The reported degrees of freedom assumes the null hypothesis is not on the boundary of the parameter space. If this is not true, then the reported test is conservative.
Urmeli
Comment