My dependent variable is a discrete scal in increments of 1 with several categorical independent variables with each patient measured twice so I thought that meologit would be an appropriate response. In the full dataset there are 302 patients. In this data subset mn is the patient identifier
----------------------- copy starting from the next line -----------------------
------------------ copy up to and including the previous line ------------------
If I ignore the duplicate measurements then I get the following results:
The coefficients of x1 are the same order of magnitude. However when I try to allow for the duplicate measurements on the same subject they are an order of magnitude larger:
I am surprised that the coefficient has changed that much as I have not observed this behaviour before when using meologit (or mixed) and I thought that only the 'variance' calculations would be significantly affected; so I have two questions:
1. Am I using meologit correctly
2. Are these results to be expected.
Thank you for any advice.
Janet
----------------------- copy starting from the next line -----------------------
Code:
* Example generated by -dataex-. For more info, type help dataex clear input long mn byte x1 double(x16 rater) 53210 1 -7 2 98415 1 3 2 30352 1 -12 2 79393 1 -9 2 21324 1 -14 2 59239 1 0 2 99470 1 -3 2 54362 1 -2 2 89914 1 -9 2 14512 1 1 2 95465 1 -10 2 23362 1 -2 2 86785 1 -4 2 74015 1 -11 2 36960 1 -4 2 60797 1 -13 2 26959 1 -8 2 36257 2 -17 2 52235 2 -2 2 38264 2 -7 2 35697 2 0 2 33592 2 -5 2 50949 2 -15 2 61932 2 -7 2 25519 2 -4 2 53210 1 -7 1 98415 1 1 1 30352 1 -12 1 79393 1 -9 1 21324 1 -12 1 59239 1 0 1 99470 1 -5 1 54362 1 -1 1 89914 1 -6 1 14512 1 -1 1 95465 1 -13 1 23362 1 -3 1 86785 1 -4 1 74015 1 -11 1 36960 1 -4 1 60797 1 -13 1 26959 1 -10 1 36257 2 -16 1 52235 2 -5 1 38264 2 -8 1 35697 2 -1 1 33592 2 -5 1 50949 2 -13 1 61932 2 -10 1 25519 2 -4 1 end
If I ignore the duplicate measurements then I get the following results:
Code:
. meologit x16 i.x1 if rater == 1 ------------------------------------------------------------------------------ x16 | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- x1 | 1 | 0.000 (base) 2 | -0.465 0.748 -0.622 0.534 -1.931 1.001 -------------+---------------------------------------------------------------- . meologit x16 i.x1 if rater == 2 ------------------------------------------------------------------------------ x16 | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- x1 | 1 | 0.000 (base) 2 | -0.207 0.760 -0.272 0.785 -1.697 1.283 -------------+---------------------------------------------------------------- . meologit x16 i.x1 ------------------------------------------------------------------------------ x16 | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- x1 | 1 | 0.000 (base) 2 | -0.354 0.532 -0.665 0.506 -1.396 0.689 -------------+----------------------------------------------------------------
Code:
. meologit x16 i.x1 ||mn:, nolog ------------------------------------------------------------------------------ x16 | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- x1 | 1 | 0.000 (base) 2 | -2.376 3.243 -0.733 0.464 -8.732 3.979 -------------+---------------------------------------------------------------- . meologit x16 i.x1 i.rater ||mn:, nolog ------------------------------------------------------------------------------ x16 | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- x1 | 1 | 0.000 (base) 2 | -2.402 3.355 -0.716 0.474 -8.977 4.173 | rater | 1 | 0.000 (base) 2 | 0.736 0.560 1.315 0.189 -0.361 1.834 -------------+----------------------------------------------------------------
1. Am I using meologit correctly
2. Are these results to be expected.
Thank you for any advice.
Janet