Hey all,
I have a dataset with a string variable as a group id and a second variable (example below with first 240 rows).
I would like to create n opportunely named scalars (where n is the number of groups), with each scalar being the sum of the second variable for a given group. I have many groups, so I guess a loop would be useful but for some reasons I haven't been able to go anywhere with that.
Thanks a lot for your help.
Matteo
I have a dataset with a string variable as a group id and a second variable (example below with first 240 rows).
I would like to create n opportunely named scalars (where n is the number of groups), with each scalar being the sum of the second variable for a given group. I have many groups, so I guess a loop would be useful but for some reasons I haven't been able to go anywhere with that.
Thanks a lot for your help.
Matteo
Code:
* Example generated by -dataex-. For more info, type help dataex clear input str25 id_origin_year float treat_a_weighted "ABRUZZO2014" 25.56268 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 23.3318 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 9.27622 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 3.42796 "ABRUZZO2014" 2.49249 "ABRUZZO2014" 0 "ABRUZZO2014" 2.7585 "ABRUZZO2014" 34.543 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" .6556501 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 1.73568 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" .9329401 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 34.11275 "ABRUZZO2014" 2.5402 "ABRUZZO2014" 9.36936 "ABRUZZO2014" 0 "ABRUZZO2014" 4.83854 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 3.476 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 2.7311 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2014" 2.20696 "ABRUZZO2014" 1.95192 "ABRUZZO2014" 7.93092 "ABRUZZO2014" 125.45865 "ABRUZZO2014" 0 "ABRUZZO2014" 0 "ABRUZZO2015" 0 "ABRUZZO2015" 0 "ABRUZZO2015" 0 "ABRUZZO2015" 0 "ABRUZZO2015" 1.42198 "ABRUZZO2015" 0 "ABRUZZO2015" 0 "ABRUZZO2015" 7.17032 "ABRUZZO2015" 0 "ABRUZZO2015" 0 "ABRUZZO2015" 9.75351 "ABRUZZO2015" 0 "ABRUZZO2015" 0 "ABRUZZO2015" 0 "ABRUZZO2015" 2.37815 "ABRUZZO2015" 0 "ABRUZZO2015" 0 "ABRUZZO2015" 0 "ABRUZZO2015" 0 "ABRUZZO2015" 50.12847 "ABRUZZO2015" 0 "ABRUZZO2015" 0 "ABRUZZO2015" 4.1416802 "ABRUZZO2015" 0 "ABRUZZO2015" 11.57039 "ABRUZZO2015" 0 "ABRUZZO2015" 0 "ABRUZZO2015" 0 "ABRUZZO2015" 0 "ABRUZZO2015" .04938 "ABRUZZO2015" 0 "ABRUZZO2015" 4.66056 "ABRUZZO2015" 24.84108 "ABRUZZO2015" 1.7994 "ABRUZZO2015" 0 "ABRUZZO2015" 1.93389 "ABRUZZO2015" 0 "ABRUZZO2015" 0 "ABRUZZO2015" 3.57275 "ABRUZZO2015" 1.86237 "ABRUZZO2015" 0 "ABRUZZO2015" 0 "ABRUZZO2015" 24.9271 "ABRUZZO2015" 5.20351 "ABRUZZO2015" 0 "ABRUZZO2015" .53159004 "ABRUZZO2015" 0 "ABRUZZO2015" 0 "ABRUZZO2015" .6961901 "ABRUZZO2015" 132.8732 "ABRUZZO2015" 11.24676 "ABRUZZO2015" 0 "ABRUZZO2015" 0 "ABRUZZO2015" 0 "ABRUZZO2015" 38.46422 "ABRUZZO2015" 0 "ABRUZZO2015" 0 "ABRUZZO2015" 0 "ABRUZZO2015" 0 "ABRUZZO2015" 3.0926 "ABRUZZO2016" 1.47436 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 4.4109597 "ABRUZZO2016" 43.53964 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 7.0598 "ABRUZZO2016" 45.46491 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" .41065 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 2.6589 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 5.14008 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 5.9629 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 3.7441 "ABRUZZO2016" 4.41112 "ABRUZZO2016" 19.02577 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 3.14525 "ABRUZZO2016" 1.7682 "ABRUZZO2016" 0 "ABRUZZO2016" 143.15472 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 22.8019 "ABRUZZO2016" 0 "ABRUZZO2016" 2.04848 "ABRUZZO2016" 0 "ABRUZZO2016" 0 "ABRUZZO2016" 1.07358 "ABRUZZO2016" 1.24176 "ABRUZZO2016" 0 "ABRUZZO2016" 11.4801 "ABRUZZO2016" 3.99244 "ABRUZZO2017" 0 "ABRUZZO2017" 1.80716 "ABRUZZO2017" 0 "ABRUZZO2017" 1.797 "ABRUZZO2017" .59517 "ABRUZZO2017" 3.01545 "ABRUZZO2017" 5.4393 "ABRUZZO2017" 0 "ABRUZZO2017" 6.1981 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 33.738903 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 3.73725 "ABRUZZO2017" .8834001 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 12.37065 "ABRUZZO2017" 89.65692 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 5.97768 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 11.68145 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 1.70656 "ABRUZZO2017" 64.36898 "ABRUZZO2017" 5.60305 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 4.3704 "ABRUZZO2017" 30.41626 "ABRUZZO2017" 3.3262 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 18.543049 "ABRUZZO2017" 187.424 "ABRUZZO2017" 1.09888 "ABRUZZO2017" 7.31488 "ABRUZZO2017" 0 "ABRUZZO2017" 0 "ABRUZZO2017" 9.6066 end
Comment