I run a linear mixed model. How do I determine whether the outcome variable changed over time? Do I simply interpret the coefficient for time (called visitnumber in my dataset)?
HTML Code:
mixed mmse ageatvisit i.decline first_age i.sex visitnumber || id: Performing EM optimization ... Performing gradient-based optimization: Iteration 0: log likelihood = -5753.401 Iteration 1: log likelihood = -5753.4008 Computing standard errors ... Mixed-effects ML regression Number of obs = 2,794 Group variable: id Number of groups = 608 Obs per group: min = 2 avg = 4.6 max = 17 Wald chi2(5) = 199.16 Log likelihood = -5753.4008 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ mmse | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- ageatvisit | -.0916696 .010122 -9.06 0.000 -.1115084 -.0718308 | decline | Declined | -1.086876 .193037 -5.63 0.000 -1.465222 -.7085304 first_age | .0400132 .0109605 3.65 0.000 .0185311 .0614953 | sex | Male | .0587166 .1235942 0.48 0.635 -.1835236 .3009567 visitnumber | .0449721 .0188307 2.39 0.017 .0080647 .0818795 _cons | 37.02418 .4801567 77.11 0.000 36.08309 37.96527 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects parameters | Estimate Std. err. [95% conf. interval] -----------------------------+------------------------------------------------ id: Identity | var(_cons) | 1.052458 .1108727 .8561182 1.293826 -----------------------------+------------------------------------------------ var(Residual) | 2.960638 .089904 2.789571 3.142196 ------------------------------------------------------------------------------ LR test vs. linear model: chibar2(01) = 258.86 Prob >= chibar2 = 0.0000 .
Comment