Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Dealing w/ multicollinearity in logit model w/ FE (state, month)

    I’m conducting an analysis where I want to know how my outcome of interest, reemployment probability, represented with a binary variable (REEMP3), changes between two 6-month time periods (months 1-6; months 7-12); so, does reemployment probability increase or decrease in months 7-12 (PREPOSTPERIOD==1) relative to months 1-6 (PREPOSTPERIOD==0). As an added dimension, I want to know how the outcome changes between these two periods, within states coded according to strictness on four policies of interest. My policy variables are also binary; states are coded as stricter or less strict (1 or 0) on the four policy measures. So, I want to know, in stricter states (policy1==1), how did the probability of reemployment change in the second 6-month period, relative to the first; and how does this compare to how reemployment changed in less strict states (policy1==0). I have a bunch of individual-level and state-level covariates. I cluster SE’s at the state level.

    I would also like to control for state and month FE. This is where it gets tricky. So, were I to exclude state and month FE, I would set up my logit model as follows. The first four independent variables are interactions of the binary policy variables and the time-period variable. The output is normal; no dropped variables (w/ exception of one very small occupational category)

    Code:
    logit reemp3 i.rq##i.prepostperiod_ma i.hidh##i.prepostperiod_ma i.lorh##i.prepostperiod_ma i.lorech##i.prepostperiod_ma b3.age_group b1.race_wbho b4.edu4 i.woman##i.marstdum1##i.ownkidd_18 b1.ind_nilf b1.uh_occmaj_b2 i.sampjl b1.durg ur_sa ur2_sa ur3_sa iur iur2 iur3 initrate initrate2 initrate3 empgrowth emp2 emp3 incrate_jhu stringd i.cutoff3n if sampall==1 & age>=18 & age<65 [pw=wtfinl], vce(cluster statefip) or
    Here’s how I would set up the model with state and month FE. To prevent multicollinearity, I’m told I should drop the POSTPERIOD dummy, since it captures the same months for which I’d insert dummies. But, when I run the following, Stata ends up dropping the interacted policy and postperiod variables, along with the last five state dummies. What am I doing wrong? I had a lengthy, very helpful discussion in December with Clyde about another multicollinearity issue (here: https://www.statalist.org/forums/for...es-model/page4). This is different (I think!). Output pasted below...

    Code:
    logit reemp3 i.rq i.hidh i.lorh i.lorech i.rq#i.prepostperiod_ma i.hidh#i.prepostperiod_ma i.lorh#i.prepostperiod_ma i.lorech#i.prepostperiod_ma b3.age_group b1.race_wbho b4.edu4 i.woman##i.marstdum1##i.ownkidd_18 b1.ind_nilf b1.uh_occmaj_b2 i.sampjl b1.durg ur_sa ur2_sa ur3_sa iur iur2 iur3 initrate initrate2 initrate3 empgrowth emp2 emp3 incrate_jhu stringd i.cutoff3n i.statefip i.ymd9 i.ymd10 i.ymd11 i.ymd12 i.ymd13 i.ymd14 i.ymd15 i.ymd16 i.ymd17 i.ymd18 i.ymd19 i.ymd20 if sampall==1 & age>=18 & age<65 [pw=wtfinl], vce(cluster statefip) or
    Code:
    . logit reemp3 i.rq i.hidh i.lorh i.lorech i.rq#i.prepostperiod_ma i.hidh#i.prepostperiod_ma i.lorh#i.prepostperiod_ma i.lorech#i.prepostperiod_
    > ma b3.age_group b1.race_wbho b4.edu4 i.woman##i.marstdum1##i.ownkidd_18 b1.ind_nilf b1.uh_occmaj_b2 i.sampjl b1.durg ur_sa ur2_sa ur3_sa iur i
    > ur2 iur3 initrate initrate2 initrate3 empgrowth emp2 emp3 incrate_jhu stringd i.cutoff3n i.statefip i.ymd9 i.ymd10 i.ymd11 i.ymd12 i.ymd13 i.y
    > md14 i.ymd15 i.ymd16 i.ymd17 i.ymd18 i.ymd19 i.ymd20 if sampall==1 & age>=18 & age<65 [pw=wtfinl], vce(cluster statefip) or
    
    note: 1.rq#1.prepostperiod_ma omitted because of collinearity.
    note: 1.hidh#1.prepostperiod_ma omitted because of collinearity.
    note: 1.lorh#1.prepostperiod_ma omitted because of collinearity.
    note: 1.lorech#1.prepostperiod_ma omitted because of collinearity.
    note: 11.uh_occmaj_b2 omitted because of collinearity.
    note: 51.statefip omitted because of collinearity.
    note: 53.statefip omitted because of collinearity.
    note: 54.statefip omitted because of collinearity.
    note: 55.statefip omitted because of collinearity.
    note: 56.statefip omitted because of collinearity.
    note: 1.ymd20 omitted because of collinearity.
    Iteration 0:   log pseudolikelihood =  -22437923  
    Iteration 1:   log pseudolikelihood =  -21171234  
    Iteration 2:   log pseudolikelihood =  -21126355  
    Iteration 3:   log pseudolikelihood =  -21126157  
    Iteration 4:   log pseudolikelihood =  -21126157  
    
    Logistic regression                                     Number of obs = 10,804
                                                            Wald chi2(43) =      .
                                                            Prob > chi2   =      .
    Log pseudolikelihood = -21126157                        Pseudo R2     = 0.0585
    
                                                                        (Std. err. adjusted for 45 clusters in statefip)
    --------------------------------------------------------------------------------------------------------------------
                                                       |               Robust
                                                reemp3 | Odds ratio   std. err.      z    P>|z|     [95% conf. interval]
    ---------------------------------------------------+----------------------------------------------------------------
                                                  1.rq |   .8759639   .2052028    -0.57   0.572     .5534574    1.386399
                                                1.hidh |   .6605953   .1239371    -2.21   0.027     .4573386     .954186
                                                1.lorh |   1.063168    .082126     0.79   0.428     .9137966    1.236956
                                              1.lorech |   .8994186   .1450101    -0.66   0.511     .6557309    1.233667
                                                       |
                                   rq#prepostperiod_ma |
                                                  0 1  |   1.394841   .1676659     2.77   0.006     1.102063    1.765399
                                                  1 1  |          1  (omitted)
                                                       |
                                 hidh#prepostperiod_ma |
                                                  0 1  |   .9149866   .1208369    -0.67   0.501       .70632    1.185299
                                                  1 1  |          1  (omitted)
                                                       |
                                 lorh#prepostperiod_ma |
                                                  0 1  |   .9691477   .0887178    -0.34   0.732     .8099705    1.159607
                                                  1 1  |          1  (omitted)
                                                       |
                               lorech#prepostperiod_ma |
                                                  0 1  |    .800244   .1520383    -1.17   0.241     .5514457    1.161294
                                                  1 1  |          1  (omitted)
                                                       |
                                             age_group |
                                                18-24  |   .9053318   .0962845    -0.94   0.350     .7349879    1.115155
                                                25-34  |   .9163359   .0900103    -0.89   0.374     .7558619     1.11088
                                                45-54  |   .9557471   .0701927    -0.62   0.538     .8276151    1.103717
                                                55-64  |   .8012826   .0686457    -2.59   0.010     .6774286    .9477808
                                                       |
                                             race_wbho |
                                           2 black nh  |   .6752778   .0780661    -3.40   0.001     .5383672    .8470058
                                    3 hispanic/latino  |   .9729026   .1120415    -0.24   0.811     .7763244    1.219258
                                             other nh  |   .6696745   .0697663    -3.85   0.000     .5459919    .8213749
                                                       |
                                                  edu4 |
                                       1 Less than HS  |   .9195733   .1157851    -0.67   0.505     .7184723    1.176963
                                          2 HS or GED  |   .9592269   .0896774    -0.45   0.656     .7986255    1.152125
                       3 Some college or Associate's'  |   1.025496   .0825591     0.31   0.754     .8758033    1.200774
                                                       |
                                               1.woman |   1.057105   .0891657     0.66   0.510     .8960246    1.247142
                                           1.marstdum1 |    1.42355   .1632607     3.08   0.002     1.136978    1.782351
                                                       |
                                       woman#marstdum1 |
                                                  1 1  |   .7660572   .1336128    -1.53   0.127     .5442492    1.078263
                                                       |
                                            ownkidd_18 |
                          1: Own children, <18, in HH  |   .7174053   .1256241    -1.90   0.058     .5089927    1.011155
                                                       |
                                      woman#ownkidd_18 |
                        1#1: Own children, <18, in HH  |   1.387122   .2865239     1.58   0.113     .9253168    2.079404
                                                       |
                                  marstdum1#ownkidd_18 |
                        1#1: Own children, <18, in HH  |   1.284939   .3104339     1.04   0.299     .8002715    2.063137
                                                       |
                            woman#marstdum1#ownkidd_18 |
                      1#1#1: Own children, <18, in HH  |   .7495964   .2058639    -1.05   0.294      .437582     1.28409
                                                       |
                                              ind_nilf |
                                                    2  |    .294526   .1242367    -2.90   0.004     .1288459    .6732507
                                                    3  |   .8449218   .3897243    -0.37   0.715     .3421336    2.086591
                                                    4  |   .7630144   .3462639    -0.60   0.551      .313508    1.857021
                                                    5  |   .7426147    .284665    -0.78   0.438     .3503275    1.574174
                                                    6  |   .6189058   .2726112    -1.09   0.276     .2610318    1.467424
                                                    7  |    .641471   .2559315    -1.11   0.266     .2934729    1.402122
                                                    8  |   .9330527   .3859499    -0.17   0.867     .4147758    2.098935
                                                    9  |    .625827   .2571176    -1.14   0.254     .2797324    1.400122
                                                   10  |   .8877231   .3144192    -0.34   0.737      .443398    1.777302
                                                   11  |   .5518519   .2135944    -1.54   0.125      .258443    1.178366
                                                   12  |   .7979687   .3611106    -0.50   0.618     .3286891    1.937253
                                                   13  |   .8836339   .3802865    -0.29   0.774     .3801401    2.054003
                                                   14  |   .4842508   .4989079    -0.70   0.482     .0642843     3.64784
                                                       |
                                          uh_occmaj_b2 |
                 professional and related occupations  |   1.149595   .0924962     1.73   0.083     .9818773     1.34596
                                  service occupations  |   1.245314   .1368721     2.00   0.046     1.003976    1.544664
                        sales and related occupations  |   1.144675   .1539027     1.00   0.315     .8795027    1.489797
        office and administrative support occupations  |   1.026844   .0943187     0.29   0.773     .8576676    1.229391
           farming, fishing, and forestry occupations  |   .8031993   .3342352    -0.53   0.598     .3553145    1.815657
              construction and extraction occupations  |   1.057206   .1507861     0.39   0.697     .7993837    1.398183
    installation, maintenance, and repair occupations  |   1.174744   .2552418     0.74   0.459     .7673593    1.798405
                               production occupations  |   1.212174   .1442737     1.62   0.106     .9599628    1.530649
       transportation and material moving occupations  |   1.143632   .1307977     1.17   0.241     .9139742    1.430996
                                         armed forces  |          1  (omitted)
                                                       |
                                              1.sampjl |   1.459405   .1067366     5.17   0.000     1.264507    1.684341
                                                       |
                                                  durg |
                                            5-8 weeks  |   .7148107   .0386471    -6.21   0.000     .6429391    .7947166
                                           9-12 weeks  |   .6361483   .0478035    -6.02   0.000     .5490282    .7370927
                                          13-16 weeks  |   .5037342   .0474485    -7.28   0.000     .4188164    .6058696
                                          17-20 weeks  |   .4016522   .0605108    -6.05   0.000     .2989597    .5396197
                                          21-26 weeks  |   .4995176   .0538834    -6.43   0.000     .4043253    .6171215
                                          27-32 weeks  |   .3555218   .0883652    -4.16   0.000     .2184237    .5786726
                                          33-38 weeks  |   .4384225   .0661046    -5.47   0.000     .3262497     .589163
                                          39-44 weeks  |   .4156303   .1025017    -3.56   0.000     .2563221     .673951
                                          45-50 weeks  |   .3319299   .1188662    -3.08   0.002     .1645226    .6696797
                                          51-52 weeks  |   .3449078   .0759586    -4.83   0.000     .2239979    .5310826
                                            >52 weeks  |   .2238139   .0389275    -8.61   0.000      .159162    .3147275
                                                       |
                                                 ur_sa |   3.30e-09   4.02e-08    -1.60   0.109     1.43e-19    76.45255
                                                ur2_sa |   8.03e+56   6.18e+58     1.70   0.088     2.94e-09    2.2e+122
                                                ur3_sa |   4.5e-135   6.8e-133    -2.02   0.043     3.6e-265    .0000561
                                                   iur |   .0001876   .0021134    -0.76   0.446     4.85e-14      725261
                                                  iur2 |   6.00e+23   5.48e+25     0.60   0.549     1.12e-54    3.2e+101
                                                  iur3 |   1.91e-65   4.23e-63    -0.67   0.500     2.1e-253    1.8e+123
                                              initrate |   2.58e-21   8.56e-20    -1.43   0.152     1.63e-49    4.10e+07
                                             initrate2 |          .          .     1.59   0.112     5.2e-191           .
                                             initrate3 |          0          0    -1.26   0.209            0           .
                                             empgrowth |   1.026503   .0358656     0.75   0.454     .9585611    1.099262
                                                  emp2 |   1.002132   .0018383     1.16   0.246     .9985354    1.005741
                                                  emp3 |   1.000203   .0001074     1.89   0.059     .9999926    1.000414
                                           incrate_jhu |   .9996615   .0001283    -2.64   0.008     .9994101    .9999129
                                               stringd |   1.009898   .0055966     1.78   0.076     .9989877    1.020927
                                            1.cutoff3n |   1.204709   .1094021     2.05   0.040     1.008283      1.4394
                                                       |
                                              statefip |
                                                    5  |   .5474853   .1628406    -2.03   0.043     .3056303    .9807277
                                                    6  |   .7088491   .0787637    -3.10   0.002     .5701283    .8813227
                                                    8  |   .6208228   .1714694    -1.73   0.084     .3613003    1.066761
                                                    9  |   .7189693   .1354696    -1.75   0.080     .4969644    1.040149
                                                   10  |   .9189624   .1377839    -0.56   0.573     .6849731    1.232883
                                                   11  |    .649819   .1030442    -2.72   0.007     .4762273    .8866874
                                                   13  |   .9209017   .0895944    -0.85   0.397     .7610269    1.114363
                                                   15  |   .9149104    .104705    -0.78   0.437     .7310794    1.144966
                                                   16  |   1.447961   .1215811     4.41   0.000     1.228241    1.706985
                                                   17  |   .6666431   .1042136    -2.59   0.009     .4907141    .9056456
                                                   19  |   1.151438   .1322751     1.23   0.220      .919297    1.442198
                                                   20  |   1.228915   .1738412     1.46   0.145     .9313474    1.621556
                                                   21  |   1.139818   .1656932     0.90   0.368     .8572311     1.51556
                                                   23  |   .6316927   .1850776    -1.57   0.117     .3557255    1.121752
                                                   24  |   .6147948   .0446059    -6.70   0.000     .5333005    .7087422
                                                   25  |   .6545012   .1038723    -2.67   0.008     .4795357    .8933056
                                                   26  |   2.299786    .637242     3.01   0.003     1.336073    3.958629
                                                   27  |   .8193352   .0659604    -2.48   0.013     .6997386    .9593727
                                                   28  |   1.669741   .3574309     2.39   0.017     1.097584    2.540156
                                                   29  |   1.148785   .1399677     1.14   0.255     .9047499    1.458643
                                                   30  |   1.664098   .2325977     3.64   0.000     1.265328    2.188542
                                                   31  |   1.656605   .1573445     5.31   0.000     1.375219    1.995566
                                                   32  |   1.340935   .1634444     2.41   0.016     1.055981    1.702783
                                                   33  |   .6338442   .1345354    -2.15   0.032      .418131    .9608436
                                                   34  |   .8104846   .1040483    -1.64   0.102     .6301868    1.042366
                                                   35  |   1.050071   .1562071     0.33   0.743     .7845039    1.405537
                                                   36  |   .7467416   .1153147    -1.89   0.059     .5517273    1.010686
                                                   37  |   1.003764   .1816936     0.02   0.983     .7039694    1.431231
                                                   38  |    .735203   .0910294    -2.48   0.013      .576787    .9371285
                                                   40  |   1.012734   .1135587     0.11   0.910     .8129227    1.261657
                                                   41  |   1.082134   .2020508     0.42   0.672     .7504963    1.560318
                                                   42  |   .8352292   .1290433    -1.17   0.244     .6170135     1.13062
                                                   44  |   .8123845   .1488013    -1.13   0.257     .5673491     1.16325
                                                   45  |   .7801361   .1288627    -1.50   0.133     .5643768    1.078379
                                                   46  |   1.158982    .111123     1.54   0.124     .9604249    1.398587
                                                   47  |   1.244327   .1920411     1.42   0.157     .9195294    1.683849
                                                   48  |   1.174027   .1647468     1.14   0.253     .8917274    1.545695
                                                   49  |   .7521419   .1802977    -1.19   0.235     .4701715    1.203215
                                                   50  |     1.2256   .1100059     2.27   0.023     1.027893    1.461335
                                                   51  |          1  (omitted)
                                                   53  |          1  (omitted)
                                                   54  |          1  (omitted)
                                                   55  |          1  (omitted)
                                                   56  |          1  (omitted)
                                                       |
                                                1.ymd9 |   .5254365   .2632841    -1.28   0.199     .1967899    1.402936
                                               1.ymd10 |   .4938725   .2484605    -1.40   0.161     .1842413    1.323862
                                               1.ymd11 |   .4226503   .2169267    -1.68   0.093     .1545607    1.155748
                                               1.ymd12 |   .5955043   .2787812    -1.11   0.268     .2379035    1.490627
                                               1.ymd13 |   .5502248   .2544128    -1.29   0.196     .2223115    1.361816
                                               1.ymd14 |   .3811032   .1696496    -2.17   0.030     .1592674    .9119235
                                               1.ymd15 |   .6239076   .3885574    -0.76   0.449     .1840809    2.114618
                                               1.ymd16 |   .8106054   .1555722    -1.09   0.274     .5564756    1.180791
                                               1.ymd17 |   1.066924   .1583095     0.44   0.662     .7976873    1.427034
                                               1.ymd18 |   1.035925   .1403874     0.26   0.795     .7942812    1.351083
                                               1.ymd19 |   1.034614   .1145833     0.31   0.759     .8327376    1.285431
                                               1.ymd20 |          1  (omitted)
                                                 _cons |   2.566342   2.396611     1.01   0.313     .4115374    16.00368
    --------------------------------------------------------------------------------------------------------------------
    Note: _cons estimates baseline odds.
    Last edited by Claire McKenna; 21 Jan 2023, 14:30.

  • #2
    Clyde Schechter, since you were so helpful with this issue the last time (in December), any thoughts on why dropping the post-period dummy doesn't resolve the issue?

    Comment


    • #3
      I wanted to answer this post when I saw it earlier, but without knowing how the other variables are defined, and without example data, I really can't.

      Comment


      • #4
        Claire:
        your model has tons of predictors.
        Most of them do not seem to have any bearing on variations in the regressand.
        As a general advice, I would consider a more parsimonious specification.
        Kind regards,
        Carlo
        (Stata 19.0)

        Comment


        • #5
          Thanks both. Clyde Schechter, let me see if I can provide some background. Hope it helps. I.RQ, I.HIDH, I.LORH, and I.LORECH are the policy variables. They are fixed, time invariant. A state's coded with a 1 or a 0 over the sample period (as they capture policy status prior to the sample period). POSTPERIOD captures 12 months; equals 1 for months March 2020 to August 2020, and 0 for months September 2019 to February 2020. All the other variables are individual-level and state-level controls. The state-level controls vary by month.

          I've attached ~25 observations from my dataset; I'm not sure how else to include data here. I hope that's okay. sample_data.dta [FWIW, here's a second snippet, featuring a couple eligible sample members: sample_data2.dta]

          Thank you.
          Attached Files
          Last edited by Claire McKenna; 23 Jan 2023, 08:12. Reason: Added more data

          Comment


          • #6
            Claire:
            I still think that you've to tidy your model up as it cannot be managed in its current specification.
            I'd start off by testing the joint statistical significance of your categorical predictors via -testparm-.
            Kind regards,
            Carlo
            (Stata 19.0)

            Comment


            • #7
              Mmm. Okay. I can try that to start. The predictors are all pretty sensible, though something weird is happening with the state labor market slack measures, which I need to investigate further. But I'll try your suggestion. Thank you Carlo.

              Comment


              • #8
                I've attached ~25 observations from my dataset; I'm not sure how else to include data here.
                The best way to show example data is with the -dataex- command. If you are running version 17, 16 or a fully updated version 15.1 or 14.2, -dataex- is already part of your official Stata installation. If not, run -ssc install dataex- to get it. Either way, run -help dataex- to read the simple instructions for using it. -dataex- will save you time; it is easier and quicker than typing out tables. It includes complete information about aspects of the data that are often critical to answering your question but cannot be seen from tabular displays or screenshots. It also makes it possible for those who want to help you to create a faithful representation of your example to try out their code, which in turn makes it more likely that their answer will actually work in your data.

                Many of us, including me, will not open attachments from people we do not know. So I haven't looked at your example data.
                Added: In any case, a sample of 25 observations is not sufficient for this situation. You have 43 variables in your model, so any data set with fewer than 44 observations will automatically have colinearities among the variables. And even if you are close to 44 observations, you are likely to have some near colinearities that may obscure what is going on. To troubleshoot this data I think an example of 100 observations would be the minimum to be barely adequate.

                Based on your explanation of some of the variables, two thoughts occur to me. One is that perhaps they are mutually exclusive and exhaustive? Another is that some combinations of the policies uniquely identify some states.

                Beyond that, I am also concerned about ur_sa through initrate_3. Their coefficients and standard errors are not really sensible. The simplest explanation is that they are simply in need of rescaling so that the coefficients and standard errors will be more "normal" numbers. Or there may be something seriously wrong with the data in those variables. In any case, variables with coefficients or standard errors like this are often indicative of trouble.
                Last edited by Clyde Schechter; 24 Jan 2023, 09:49.

                Comment


                • #9
                  Thanks, Clyde Schechter. Here's an example dataset (~150 observations), featuring the variables of interest. Please let me know if there's anything else I should provide here. I'm looking into what might be the issue with ur_sa through initrate_3 (which are state-by-month variables representing different labor market conditions). Rescaling might be the solution. Thanks for your help.


                  Code:
                  * Example generated by -dataex-. For more info, type help dataex
                  clear
                  input double personid float year_month byte statefip float(reemp3 rq hidh lorh lorech prepostperiod_ma ur_sa ur2_sa ur3_sa iur iur2 iur3 initrate initrate2 initrate3 empgrowth emp2 emp3) double wtfinl
                  23622451 718 15 0 0 1 0 0 0 .019 .000361 6.858999e-06     .00955   .0000912025  8.709837e-07 .0018336505  3.362274e-06  6.165236e-09  -.16638567    .02768419   -.0046062525  774.6097
                  19274221 717 15 0 0 1 0 0 0 .019 .000361 6.858999e-06     .00946  .00008949159  8.465904e-07 .0017599835  3.097542e-06  5.451623e-09 -.015129555 .00022890343  -3.463207e-06 1007.2339
                  19276781 718 15 0 0 1 0 0 0 .019 .000361 6.858999e-06     .00955   .0000912025  8.709837e-07 .0018336505  3.362274e-06  6.165236e-09  -.16638567    .02768419   -.0046062525   867.561
                  19622921 718 15 0 0 1 0 0 0 .019 .000361 6.858999e-06     .00955   .0000912025  8.709837e-07 .0018336505  3.362274e-06  6.165236e-09  -.16638567    .02768419   -.0046062525  795.5599
                  23295261 717 15 0 0 1 0 0 0 .019 .000361 6.858999e-06     .00946  .00008949159  8.465904e-07 .0017599835  3.097542e-06  5.451623e-09 -.015129555 .00022890343  -3.463207e-06  959.0402
                  22959441 717 15 0 0 1 0 0 0 .019 .000361 6.858999e-06     .00946  .00008949159  8.465904e-07 .0017599835  3.097542e-06  5.451623e-09 -.015129555 .00022890343  -3.463207e-06 1114.1563
                  18922491 717 15 0 0 1 0 0 0 .019 .000361 6.858999e-06     .00946  .00008949159  8.465904e-07 .0017599835  3.097542e-06  5.451623e-09 -.015129555 .00022890343  -3.463207e-06 1071.2867
                  19275881 718 15 1 0 1 0 0 0 .019 .000361 6.858999e-06     .00955   .0000912025  8.709837e-07 .0018336505  3.362274e-06  6.165236e-09  -.16638567    .02768419   -.0046062525 1371.2386
                  19274351 718 15 0 0 1 0 0 0 .019 .000361 6.858999e-06     .00955   .0000912025  8.709837e-07 .0018336505  3.362274e-06  6.165236e-09  -.16638567    .02768419   -.0046062525 1282.4831
                  23296231 717 15 0 0 1 0 0 0 .019 .000361 6.858999e-06     .00946  .00008949159  8.465904e-07 .0017599835  3.097542e-06  5.451623e-09 -.015129555 .00022890343  -3.463207e-06 1368.8686
                  23297411 718 15 0 0 1 0 0 0 .019 .000361 6.858999e-06     .00955   .0000912025  8.709837e-07 .0018336505  3.362274e-06  6.165236e-09  -.16638567    .02768419   -.0046062525   757.553
                  23623741 718 15 0 0 1 0 0 0 .019 .000361 6.858999e-06     .00955   .0000912025  8.709837e-07 .0018336505  3.362274e-06  6.165236e-09  -.16638567    .02768419   -.0046062525   638.431
                  23297411 717 15 0 0 1 0 0 0 .019 .000361 6.858999e-06     .00946  .00008949159  8.465904e-07 .0017599835  3.097542e-06  5.451623e-09 -.015129555 .00022890343  -3.463207e-06  883.4711
                  23294781 718 15 0 0 1 0 0 0 .019 .000361 6.858999e-06     .00955   .0000912025  8.709837e-07 .0018336505  3.362274e-06  6.165236e-09  -.16638567    .02768419   -.0046062525  965.8373
                  18576671 716 15 0 0 1 0 0 0  .02   .0004 7.999999e-06      .0097     .00009409  9.126731e-07  .001760585 3.0996596e-06  5.457214e-09  .030259034  .0009156091   .00002770545  704.7217
                  19753971 718 38 0 1 1 0 0 0  .02   .0004 7.999999e-06    .007575  .00005738062  4.346582e-07 .0021761353  4.735565e-06  1.030523e-08   .02268563  .0005146379  .000011674886   345.624
                  20096401 719 38 0 1 1 0 0 0  .02   .0004 7.999999e-06     .01364   .0001860496  2.537716e-06 .0024973396  6.236705e-06 1.5575171e-08   .04537482  .0020588744   .00009342106  617.2639
                  24078991 719 38 1 1 1 0 0 0  .02   .0004 7.999999e-06     .01364   .0001860496  2.537716e-06 .0024973396  6.236705e-06 1.5575171e-08   .04537482  .0020588744   .00009342106  367.6291
                  23751481 719 38 0 1 1 0 0 0  .02   .0004 7.999999e-06     .01364   .0001860496  2.537716e-06 .0024973396  6.236705e-06 1.5575171e-08   .04537482  .0020588744   .00009342106  259.7091
                  23425851 718 38 0 1 1 0 0 0  .02   .0004 7.999999e-06    .007575  .00005738062  4.346582e-07 .0021761353  4.735565e-06  1.030523e-08   .02268563  .0005146379  .000011674886  463.7176
                  23430651 718 38 0 1 1 0 0 0  .02   .0004 7.999999e-06    .007575  .00005738062  4.346582e-07 .0021761353  4.735565e-06  1.030523e-08   .02268563  .0005146379  .000011674886   520.642
                  24078191 719 38 0 1 1 0 0 0  .02   .0004 7.999999e-06     .01364   .0001860496  2.537716e-06 .0024973396  6.236705e-06 1.5575171e-08   .04537482  .0020588744   .00009342106  414.0225
                  20094691 719 38 0 1 1 0 0 0  .02   .0004 7.999999e-06     .01364   .0001860496  2.537716e-06 .0024973396  6.236705e-06 1.5575171e-08   .04537482  .0020588744   .00009342106  376.6195
                  22959441 716 15 0 0 1 0 0 0  .02   .0004 7.999999e-06      .0097     .00009409  9.126731e-07  .001760585 3.0996596e-06  5.457214e-09  .030259034  .0009156091   .00002770545 1067.3433
                  19753971 719 38 0 1 1 0 0 0  .02   .0004 7.999999e-06     .01364   .0001860496  2.537716e-06 .0024973396  6.236705e-06 1.5575171e-08   .04537482  .0020588744   .00009342106  336.8039
                  23752731 718 38 0 1 1 0 0 0  .02   .0004 7.999999e-06    .007575  .00005738062  4.346582e-07 .0021761353  4.735565e-06  1.030523e-08   .02268563  .0005146379  .000011674886  532.5828
                  23428541 718 38 0 1 1 0 0 0  .02   .0004 7.999999e-06    .007575  .00005738062  4.346582e-07 .0021761353  4.735565e-06  1.030523e-08   .02268563  .0005146379  .000011674886  348.8127
                  23949431 719 15 0 0 1 0 0 0  .02   .0004 7.999999e-06      .0105     .00011025  1.157625e-06  .002325738  5.409058e-06 1.2580052e-08     .696966     .4857616       .3385593  786.6038
                  23752641 719 38 0 1 1 0 0 0  .02   .0004 7.999999e-06     .01364   .0001860496  2.537716e-06 .0024973396  6.236705e-06 1.5575171e-08   .04537482  .0020588744   .00009342106  433.1915
                  22625071 716 15 0 0 1 0 0 0  .02   .0004 7.999999e-06      .0097     .00009409  9.126731e-07  .001760585 3.0996596e-06  5.457214e-09  .030259034  .0009156091   .00002770545 1011.4361
                  23752721 718 38 0 1 1 0 0 0  .02   .0004 7.999999e-06    .007575  .00005738062  4.346582e-07 .0021761353  4.735565e-06  1.030523e-08   .02268563  .0005146379  .000011674886  573.5391
                  23430611 718 38 0 1 1 0 0 0  .02   .0004 7.999999e-06    .007575  .00005738062  4.346582e-07 .0021761353  4.735565e-06  1.030523e-08   .02268563  .0005146379  .000011674886  322.3373
                  23622481 719 15 1 0 1 0 0 0  .02   .0004 7.999999e-06      .0105     .00011025  1.157625e-06  .002325738  5.409058e-06 1.2580052e-08     .696966     .4857616       .3385593  736.2949
                  19622921 719 15 1 0 1 0 0 0  .02   .0004 7.999999e-06      .0105     .00011025  1.157625e-06  .002325738  5.409058e-06 1.2580052e-08     .696966     .4857616       .3385593   815.636
                  20097241 719 38 0 1 1 0 0 0  .02   .0004 7.999999e-06     .01364   .0001860496  2.537716e-06 .0024973396  6.236705e-06 1.5575171e-08   .04537482  .0020588744   .00009342106  381.8292
                  18922491 716 15 0 0 1 0 0 0  .02   .0004 7.999999e-06      .0097     .00009409  9.126731e-07  .001760585 3.0996596e-06  5.457214e-09  .030259034  .0009156091   .00002770545 1068.9582
                  18579031 716 15 0 0 1 0 0 0  .02   .0004 7.999999e-06      .0097     .00009409  9.126731e-07  .001760585 3.0996596e-06  5.457214e-09  .030259034  .0009156091   .00002770545  753.3666
                  23624901 719 15 1 0 1 0 0 0  .02   .0004 7.999999e-06      .0105     .00011025  1.157625e-06  .002325738  5.409058e-06 1.2580052e-08     .696966     .4857616       .3385593  779.5862
                  23751401 718 38 0 1 1 0 0 0  .02   .0004 7.999999e-06    .007575  .00005738062  4.346582e-07 .0021761353  4.735565e-06  1.030523e-08   .02268563  .0005146379  .000011674886  704.6757
                  20438731 720 38 0 1 1 0 0 0 .021 .000441    9.261e-06    .016825  .00028308062  4.762831e-06 .0011983024 1.4359285e-06 1.7206766e-09  -.04535424  .0020570073  -.00009329402  357.9468
                  20303971 720 15 0 0 1 0 0 0 .021 .000441    9.261e-06    .009975  .00009950063  9.925188e-07 .0018028006   3.25009e-06  5.859264e-09  -.15046646   .022640154    -.003406584  756.8741
                  20301291 720 15 1 0 1 0 0 0 .021 .000441    9.261e-06    .009975  .00009950063  9.925188e-07 .0018028006   3.25009e-06  5.859264e-09  -.15046646   .022640154    -.003406584 1515.4074
                  22760651 716 38 0 1 1 0 0 0 .021 .000441    9.261e-06      .0033 .000010889999  3.593699e-08 .0006007483  3.608986e-07 2.1680922e-10   .20421916    .04170547     .008517056  357.0898
                  23091991 716 38 0 1 1 0 0 0 .021 .000441    9.261e-06      .0033 .000010889999  3.593699e-08 .0006007483  3.608986e-07 2.1680922e-10   .20421916    .04170547     .008517056  363.8397
                  20303731 720 15 0 0 1 0 0 0 .021 .000441    9.261e-06    .009975  .00009950063  9.925188e-07 .0018028006   3.25009e-06  5.859264e-09  -.15046646   .022640154    -.003406584 1094.7234
                  24283101 720 15 0 0 1 0 0 0 .021 .000441    9.261e-06    .009975  .00009950063  9.925188e-07 .0018028006   3.25009e-06  5.859264e-09  -.15046646   .022640154    -.003406584  951.3791
                  24417791 720 38 0 1 1 0 0 0 .021 .000441    9.261e-06    .016825  .00028308062  4.762831e-06 .0011983024 1.4359285e-06 1.7206766e-09  -.04535424  .0020570073  -.00009329402  449.9743
                  20097391 720 38 0 1 1 0 0 0 .021 .000441    9.261e-06    .016825  .00028308062  4.762831e-06 .0011983024 1.4359285e-06 1.7206766e-09  -.04535424  .0020570073  -.00009329402  367.2127
                  24078191 720 38 0 1 1 0 0 0 .021 .000441    9.261e-06    .016825  .00028308062  4.762831e-06 .0011983024 1.4359285e-06 1.7206766e-09  -.04535424  .0020570073  -.00009329402  383.9173
                  23949431 720 15 0 0 1 0 0 0 .021 .000441    9.261e-06    .009975  .00009950063  9.925188e-07 .0018028006   3.25009e-06  5.859264e-09  -.15046646   .022640154    -.003406584   887.395
                  24283951 720 15 0 0 1 0 0 0 .021 .000441    9.261e-06    .009975  .00009950063  9.925188e-07 .0018028006   3.25009e-06  5.859264e-09  -.15046646   .022640154    -.003406584 1591.7646
                  20300871 720 15 0 0 1 0 0 0 .021 .000441    9.261e-06    .009975  .00009950063  9.925188e-07 .0018028006   3.25009e-06  5.859264e-09  -.15046646   .022640154    -.003406584  737.0807
                  23094631 716 38 0 1 1 0 0 0 .021 .000441    9.261e-06      .0033 .000010889999  3.593699e-08 .0006007483  3.608986e-07 2.1680922e-10   .20421916    .04170547     .008517056  418.8556
                  24283661 720 15 0 0 1 0 0 0 .021 .000441    9.261e-06    .009975  .00009950063  9.925188e-07 .0018028006   3.25009e-06  5.859264e-09  -.15046646   .022640154    -.003406584  761.6678
                  24418931 720 38 0 1 1 0 0 0 .021 .000441    9.261e-06    .016825  .00028308062  4.762831e-06 .0011983024 1.4359285e-06 1.7206766e-09  -.04535424  .0020570073  -.00009329402  408.7913
                  20301771 720 15 0 0 1 0 0 0 .021 .000441    9.261e-06    .009975  .00009950063  9.925188e-07 .0018028006   3.25009e-06  5.859264e-09  -.15046646   .022640154    -.003406584  805.3245
                  23094191 716 38 0 1 1 0 0 0 .021 .000441    9.261e-06      .0033 .000010889999  3.593699e-08 .0006007483  3.608986e-07 2.1680922e-10   .20421916    .04170547     .008517056  630.1064
                  18718891 716 38 1 1 1 0 0 0 .021 .000441    9.261e-06      .0033 .000010889999  3.593699e-08 .0006007483  3.608986e-07 2.1680922e-10   .20421916    .04170547     .008517056   330.153
                  20439421 720 38 0 1 1 0 0 0 .021 .000441    9.261e-06    .016825  .00028308062  4.762831e-06 .0011983024 1.4359285e-06 1.7206766e-09  -.04535424  .0020570073  -.00009329402  371.1817
                  23093331 717 38 0 1 1 0 0 0 .021 .000441    9.261e-06      .0041     .00001681 6.8921004e-08 .0013652077  1.863792e-06  2.544463e-09  -.20380296    .04153565    -.008465087  518.4528
                  24081611 720 38 0 1 1 0 0 0 .021 .000441    9.261e-06    .016825  .00028308062  4.762831e-06 .0011983024 1.4359285e-06 1.7206766e-09  -.04535424  .0020570073  -.00009329402  455.5744
                  23428541 717 38 0 1 1 0 0 0 .021 .000441    9.261e-06      .0041     .00001681 6.8921004e-08 .0013652077  1.863792e-06  2.544463e-09  -.20380296    .04153565    -.008465087  357.1277
                  24619291 722 15 0 0 1 0 0 1 .022 .000484   .000010648     .05478    .003000849   .0001643865   .05526815    .003054568  .00016882035  -22.279873     496.3927     -11059.567  661.1515
                  20636201 722 15 0 0 1 0 0 1 .022 .000484   .000010648     .05478    .003000849   .0001643865   .05526815    .003054568  .00016882035  -22.279873     496.3927     -11059.567  751.9965
                  24418931 721 38 0 1 1 0 0 0 .022 .000484   .000010648    .016125   .0002600156 4.1927515e-06 .0009936253  9.872912e-07  9.809974e-10   -.4310331    .18578954     -.08008144   412.927
                  24619251 721 15 1 0 1 0 0 0 .022 .000484   .000010648    .009825  .00009653064  9.484136e-07 .0019828796 3.9318115e-06 7.7963085e-09  -1.2507516    1.5643796     -1.9566503  684.3941
                  24417791 721 38 0 1 1 0 0 0 .022 .000484   .000010648    .016125   .0002600156 4.1927515e-06 .0009936253  9.872912e-07  9.809974e-10   -.4310331    .18578954     -.08008144  429.4841
                  24617751 721 15 1 0 1 0 0 0 .022 .000484   .000010648    .009825  .00009653064  9.484136e-07 .0019828796 3.9318115e-06 7.7963085e-09  -1.2507516    1.5643796     -1.9566503  912.1545
                  20438731 721 38 1 1 1 0 0 0 .022 .000484   .000010648    .016125   .0002600156 4.1927515e-06 .0009936253  9.872912e-07  9.809974e-10   -.4310331    .18578954     -.08008144  353.2391
                  24750461 721 38 0 1 1 0 0 0 .022 .000484   .000010648    .016125   .0002600156 4.1927515e-06 .0009936253  9.872912e-07  9.809974e-10   -.4310331    .18578954     -.08008144  498.8355
                  20774521 721 38 0 1 1 0 0 0 .022 .000484   .000010648    .016125   .0002600156 4.1927515e-06 .0009936253  9.872912e-07  9.809974e-10   -.4310331    .18578954     -.08008144  357.3046
                  24749041 721 38 0 1 1 0 0 0 .022 .000484   .000010648    .016125   .0002600156 4.1927515e-06 .0009936253  9.872912e-07  9.809974e-10   -.4310331    .18578954     -.08008144  516.2645
                  24938541 722 15 0 0 1 0 0 1 .022 .000484   .000010648     .05478    .003000849   .0001643865   .05526815    .003054568  .00016882035  -22.279873     496.3927     -11059.567  1219.836
                  24750281 721 38 0 1 1 0 0 0 .022 .000484   .000010648    .016125   .0002600156 4.1927515e-06 .0009936253  9.872912e-07  9.809974e-10   -.4310331    .18578954     -.08008144  371.1504
                  24417541 721 38 0 1 1 0 0 0 .022 .000484   .000010648    .016125   .0002600156 4.1927515e-06 .0009936253  9.872912e-07  9.809974e-10   -.4310331    .18578954     -.08008144  484.7811
                  20438351 721 38 0 1 1 0 0 0 .022 .000484   .000010648    .016125   .0002600156 4.1927515e-06 .0009936253  9.872912e-07  9.809974e-10   -.4310331    .18578954     -.08008144  373.9177
                  20303731 721 15 0 0 1 0 0 0 .022 .000484   .000010648    .009825  .00009653064  9.484136e-07 .0019828796 3.9318115e-06 7.7963085e-09  -1.2507516    1.5643796     -1.9566503 1120.9953
                  20303971 721 15 0 0 1 0 0 0 .022 .000484   .000010648    .009825  .00009653064  9.484136e-07 .0019828796 3.9318115e-06 7.7963085e-09  -1.2507516    1.5643796     -1.9566503  839.1937
                  24750441 721 38 0 1 1 0 0 0 .022 .000484   .000010648    .016125   .0002600156 4.1927515e-06 .0009936253  9.872912e-07  9.809974e-10   -.4310331    .18578954     -.08008144  498.8355
                  20636201 721 15 0 0 1 0 0 0 .022 .000484   .000010648    .009825  .00009653064  9.484136e-07 .0019828796 3.9318115e-06 7.7963085e-09  -1.2507516    1.5643796     -1.9566503  778.9029
                  24416381 721 38 1 1 1 0 0 0 .022 .000484   .000010648    .016125   .0002600156 4.1927515e-06 .0009936253  9.872912e-07  9.809974e-10   -.4310331    .18578954     -.08008144  452.1086
                  20973401 722 15 0 0 1 0 0 1 .022 .000484   .000010648     .05478    .003000849   .0001643865   .05526815    .003054568  .00016882035  -22.279873     496.3927     -11059.567  901.8695
                  24415141 721 38 0 1 1 0 0 0 .022 .000484   .000010648    .016125   .0002600156 4.1927515e-06 .0009936253  9.872912e-07  9.809974e-10   -.4310331    .18578954     -.08008144  393.1503
                  24283661 721 15 0 0 1 0 0 0 .022 .000484   .000010648    .009825  .00009653064  9.484136e-07 .0019828796 3.9318115e-06 7.7963085e-09  -1.2507516    1.5643796     -1.9566503  735.7643
                  24747581 721 38 1 1 1 0 0 0 .022 .000484   .000010648    .016125   .0002600156 4.1927515e-06 .0009936253  9.872912e-07  9.809974e-10   -.4310331    .18578954     -.08008144  394.8541
                  24618301 721 15 1 0 1 0 0 0 .022 .000484   .000010648    .009825  .00009653064  9.484136e-07 .0019828796 3.9318115e-06 7.7963085e-09  -1.2507516    1.5643796     -1.9566503  694.6114
                  18752381 716 45 0 0 1 1 1 0 .024 .000576   .000013824      .0064     .00004096 2.6214397e-07  .001019045 1.0384528e-06 1.0582301e-09   .04548142  .0020685596   .00009408104 2608.3381
                  23130781 716 45 1 0 1 1 1 0 .024 .000576   .000013824      .0064     .00004096 2.6214397e-07  .001019045 1.0384528e-06 1.0582301e-09   .04548142  .0020685596   .00009408104 3725.9525
                  23130321 716 45 0 0 1 1 1 0 .024 .000576   .000013824      .0064     .00004096 2.6214397e-07  .001019045 1.0384528e-06 1.0582301e-09   .04548142  .0020685596   .00009408104 2169.5585
                  18755141 716 45 1 0 1 1 1 0 .024 .000576   .000013824      .0064     .00004096 2.6214397e-07  .001019045 1.0384528e-06 1.0582301e-09   .04548142  .0020685596   .00009408104 2784.2911
                  21184471 722 49 0 0 1 0 1 1 .025 .000625   .000015625 .032899998   .0010824099 .000035611283  .017125264   .0002932747  5.022406e-06   -8.825028     77.88113      -687.3032 1946.8851
                  23170061 716 50 0 1 0 0 0 0 .025 .000625   .000015625       .006       .000036      2.16e-07 .0008849686  7.831695e-07  6.930804e-10           0            0              0  517.0318
                  24790811 722 46 1 1 1 0 1 1 .025 .000625   .000015625      .0229     .00052441  .00001200899  .013585133  .00018455583 2.5072154e-06   -9.514077     90.51766      -861.1921    488.95
                  24155781 719 49 0 0 1 0 1 0 .025 .000625   .000015625     .00764   .0000583696  4.459437e-07  .001059607  1.122767e-06 1.1896918e-09   .08910543   .007939777    .0007074772 1430.4963
                  23253791 717  8 0 0 0 0 1 0 .025 .000625   .000015625     .00628   .0000394384  2.476732e-07  .000857534  7.353645e-07     6.306e-10   .14971824    .02241555     .003356017 5940.7195
                  18797481 716 50 1 1 0 0 0 0 .025 .000625   .000015625       .006       .000036      2.16e-07 .0008849686  7.831695e-07  6.930804e-10           0            0              0  588.8233
                  24488711 720 49 0 0 1 0 1 0 .025 .000625   .000015625     .00825   .0000680625  5.615156e-07 .0008496731  7.219444e-07  6.134168e-10   .10174078   .010351188    .0010531379 2040.4436
                  20778301 722 38 0 1 1 0 0 1 .025 .000625   .000015625      .0431     .00185761  .00008006299  .024353333   .0005930848 .000014443592    -11.8478    140.37039     -1663.0806  375.7891
                  18535871 716  8 0 0 0 0 1 0 .025 .000625   .000015625    .005825 .000033930624 1.9764587e-07 .0006491794  4.214339e-07 2.7358618e-10   .06776895    .00459263    .0003112377 3352.3004
                  24154221 719 49 1 0 1 0 1 0 .025 .000625   .000015625     .00764   .0000583696  4.459437e-07  .001059607  1.122767e-06 1.1896918e-09   .08910543   .007939777    .0007074772 1563.9686
                  23255291 717  8 0 0 0 0 1 0 .025 .000625   .000015625     .00628   .0000394384  2.476732e-07  .000857534  7.353645e-07     6.306e-10   .14971824    .02241555     .003356017 4461.1757
                  23128332 717 45 1 0 1 1 1 0 .025 .000625   .000015625     .00656   .0000430336 2.8230042e-07 .0011292454  1.275195e-06 1.4400082e-09 -.013640444  .0001860617  -2.537964e-06 2362.2487
                  23129521 717 45 0 0 1 1 1 0 .025 .000625   .000015625     .00656   .0000430336 2.8230042e-07 .0011292454  1.275195e-06 1.4400082e-09 -.013640444  .0001860617  -2.537964e-06 2228.1091
                  23465191 718 45 0 0 1 1 1 0 .025 .000625   .000015625       .007       .000049 3.4299995e-07 .0012684568 1.6089826e-06  2.040925e-09 -.031824645  .0010128081 -.000032232256 1862.0222
                  18882451 717  8 1 0 0 0 1 0 .025 .000625   .000015625     .00628   .0000394384  2.476732e-07  .000857534  7.353645e-07     6.306e-10   .14971824    .02241555     .003356017 3123.6019
                  23463961 718 45 0 0 1 1 1 0 .025 .000625   .000015625       .007       .000049 3.4299995e-07 .0012684568 1.6089826e-06  2.040925e-09 -.031824645  .0010128081 -.000032232256 3319.8313
                  20172581 719 49 1 0 1 0 1 0 .025 .000625   .000015625     .00764   .0000583696  4.459437e-07  .001059607  1.122767e-06 1.1896918e-09   .08910543   .007939777    .0007074772  1450.649
                  23467511 718 45 0 0 1 1 1 0 .025 .000625   .000015625       .007       .000049 3.4299995e-07 .0012684568 1.6089826e-06  2.040925e-09 -.031824645  .0010128081 -.000032232256 3898.5439
                  18535761 716  8 0 0 0 0 1 0 .025 .000625   .000015625    .005825 .000033930624 1.9764587e-07 .0006491794  4.214339e-07 2.7358618e-10   .06776895    .00459263    .0003112377 4943.6182
                  18884291 716  8 0 0 0 0 1 0 .025 .000625   .000015625    .005825 .000033930624 1.9764587e-07 .0006491794  4.214339e-07 2.7358618e-10   .06776895    .00459263    .0003112377 2850.9776
                  25122891 722 49 0 0 1 0 1 1 .025 .000625   .000015625 .032899998   .0010824099 .000035611283  .017125264   .0002932747  5.022406e-06   -8.825028     77.88113      -687.3032 1645.9897
                  20817531 722 46 0 1 1 0 1 1 .025 .000625   .000015625      .0229     .00052441  .00001200899  .013585133  .00018455583 2.5072154e-06   -9.514077     90.51766      -861.1921  470.8691
                  19453271 717 45 0 0 1 1 1 0 .025 .000625   .000015625     .00656   .0000430336 2.8230042e-07 .0011292454  1.275195e-06 1.4400082e-09 -.013640444  .0001860617  -2.537964e-06 2755.9883
                  18796521 716 50 0 1 0 0 0 0 .025 .000625   .000015625       .006       .000036      2.16e-07 .0008849686  7.831695e-07  6.930804e-10           0            0              0   382.713
                  23169131 717 49 1 0 1 0 1 0 .025 .000625   .000015625      .0043     .00001849  7.950701e-08  .000807548  6.521337e-07  5.266292e-10    .2359663    .05568008     .013138623 1608.3997
                  24153811 719 49 1 0 1 0 1 0 .025 .000625   .000015625     .00764   .0000583696  4.459437e-07  .001059607  1.122767e-06 1.1896918e-09   .08910543   .007939777    .0007074772   1750.29
                  23130321 717 45 1 0 1 1 1 0 .025 .000625   .000015625     .00656   .0000430336 2.8230042e-07 .0011292454  1.275195e-06 1.4400082e-09 -.013640444  .0001860617  -2.537964e-06  2189.401
                  24749131 722 38 0 1 1 0 0 1 .025 .000625   .000015625      .0431     .00185761  .00008006299  .024353333   .0005930848 .000014443592    -11.8478    140.37039     -1663.0806  511.7145
                  24750971 722 38 0 1 1 0 0 1 .025 .000625   .000015625      .0431     .00185761  .00008006299  .024353333   .0005930848 .000014443592    -11.8478    140.37039     -1663.0806   557.724
                  20516201 720 50 1 1 0 0 0 0 .025 .000625   .000015625     .01625   .0002640625  4.291015e-06  .001661406 2.7602696e-06  4.585928e-09 -.031657882  .0010022215  -.00003172821   325.203
                  18884881 717  8 1 0 0 0 1 0 .025 .000625   .000015625     .00628   .0000394384  2.476732e-07  .000857534  7.353645e-07     6.306e-10   .14971824    .02241555     .003356017  3683.045
                  23163601 716 49 1 0 1 0 1 0 .025 .000625   .000015625     .00405   .0000164025  6.643013e-08 .0006550029  4.290288e-07  2.810151e-10   .17248777    .02975203     .005131861 1727.1921
                  22833451 716 49 1 0 1 0 1 0 .025 .000625   .000015625     .00405   .0000164025  6.643013e-08 .0006550029  4.290288e-07  2.810151e-10   .17248777    .02975203     .005131861 1425.5631
                  23822611 718 49 0 0 1 0 1 0 .025 .000625   .000015625    .005775 .000033350625 1.9259986e-07  .001213488  1.472553e-06 1.7869253e-09 -.031812686   .001012047 -.000032195934 1895.0406
                  23499331 717 49 0 0 1 0 1 0 .025 .000625   .000015625      .0043     .00001849  7.950701e-08  .000807548  6.521337e-07  5.266292e-10    .2359663    .05568008     .013138623 1314.1922
                  19493201 718 49 1 0 1 0 1 0 .025 .000625   .000015625    .005775 .000033350625 1.9259986e-07  .001213488  1.472553e-06 1.7869253e-09 -.031812686   .001012047 -.000032195934 1895.3038
                  18793961 716 49 1 0 1 0 1 0 .025 .000625   .000015625     .00405   .0000164025  6.643013e-08 .0006550029  4.290288e-07  2.810151e-10   .17248777    .02975203     .005131861 1652.6082
                  20816611 722 46 0 1 1 0 1 1 .025 .000625   .000015625      .0229     .00052441  .00001200899  .013585133  .00018455583 2.5072154e-06   -9.514077     90.51766      -861.1921  512.1584
                  20818041 722 46 0 1 1 0 1 1 .025 .000625   .000015625      .0229     .00052441  .00001200899  .013585133  .00018455583 2.5072154e-06   -9.514077     90.51766      -861.1921  574.2352
                  24750441 722 38 0 1 1 0 0 1 .025 .000625   .000015625      .0431     .00185761  .00008006299  .024353333   .0005930848 .000014443592    -11.8478    140.37039     -1663.0806   526.713
                  19489291 717 49 1 0 1 0 1 0 .025 .000625   .000015625      .0043     .00001849  7.950701e-08  .000807548  6.521337e-07  5.266292e-10    .2359663    .05568008     .013138623 1617.3071
                  23462531 717 45 0 0 1 1 1 0 .025 .000625   .000015625     .00656   .0000430336 2.8230042e-07 .0011292454  1.275195e-06 1.4400082e-09 -.013640444  .0001860617  -2.537964e-06 2619.8806
                  25094901 722 46 0 1 1 0 1 1 .025 .000625   .000015625      .0229     .00052441  .00001200899  .013585133  .00018455583 2.5072154e-06   -9.514077     90.51766      -861.1921 1088.4617
                  24155781 720 49 0 0 1 0 1 0 .025 .000625   .000015625     .00825   .0000680625  5.615156e-07 .0008496731  7.219444e-07  6.134168e-10   .10174078   .010351188    .0010531379 1413.3341
                  20167431 719 49 1 0 1 0 1 0 .025 .000625   .000015625     .00764   .0000583696  4.459437e-07  .001059607  1.122767e-06 1.1896918e-09   .08910543   .007939777    .0007074772 1307.4807
                  23822631 719 49 0 0 1 0 1 0 .025 .000625   .000015625     .00764   .0000583696  4.459437e-07  .001059607  1.122767e-06 1.1896918e-09   .08910543   .007939777    .0007074772 1596.6049
                  21109611 722 38 0 1 1 0 0 1 .025 .000625   .000015625      .0431     .00185761  .00008006299  .024353333   .0005930848 .000014443592    -11.8478    140.37039     -1663.0806  439.4328
                  22920171 717  8 0 0 0 0 1 0 .025 .000625   .000015625     .00628   .0000394384  2.476732e-07  .000857534  7.353645e-07     6.306e-10   .14971824    .02241555     .003356017  4453.175
                  22840811 716 50 1 1 0 0 0 0 .025 .000625   .000015625       .006       .000036      2.16e-07 .0008849686  7.831695e-07  6.930804e-10           0            0              0  468.8364
                  20510341 720 49 1 0 1 0 1 0 .025 .000625   .000015625     .00825   .0000680625  5.615156e-07 .0008496731  7.219444e-07  6.134168e-10   .10174078   .010351188    .0010531379 1774.1269
                  20514341 720 50 0 1 0 0 0 0 .025 .000625   .000015625     .01625   .0002640625  4.291015e-06  .001661406 2.7602696e-06  4.585928e-09 -.031657882  .0010022215  -.00003172821  322.7622
                  23167041 717 49 0 0 1 0 1 0 .025 .000625   .000015625      .0043     .00001849  7.950701e-08  .000807548  6.521337e-07  5.266292e-10    .2359663    .05568008     .013138623  3048.389
                  18884291 717  8 0 0 0 0 1 0 .025 .000625   .000015625     .00628   .0000394384  2.476732e-07  .000857534  7.353645e-07     6.306e-10   .14971824    .02241555     .003356017 2799.7421
                  23465301 717 45 0 0 1 1 1 0 .025 .000625   .000015625     .00656   .0000430336 2.8230042e-07 .0011292454  1.275195e-06 1.4400082e-09 -.013640444  .0001860617  -2.537964e-06 3059.9985
                  23500861 718 49 0 0 1 0 1 0 .025 .000625   .000015625    .005775 .000033350625 1.9259986e-07  .001213488  1.472553e-06 1.7869253e-09 -.031812686   .001012047 -.000032195934 1488.8886
                  19234131 717  8 1 0 0 0 1 0 .025 .000625   .000015625     .00628   .0000394384  2.476732e-07  .000857534  7.353645e-07     6.306e-10   .14971824    .02241555     .003356017 2953.4974
                  23463961 717 45 0 0 1 1 1 0 .025 .000625   .000015625     .00656   .0000430336 2.8230042e-07 .0011292454  1.275195e-06 1.4400082e-09 -.013640444  .0001860617  -2.537964e-06 3397.6706
                  20846221 722 49 0 0 1 0 1 1 .025 .000625   .000015625 .032899998   .0010824099 .000035611283  .017125264   .0002932747  5.022406e-06   -8.825028     77.88113      -687.3032 3236.9215
                  23128551 717 45 0 0 1 1 1 0 .025 .000625   .000015625     .00656   .0000430336 2.8230042e-07 .0011292454  1.275195e-06 1.4400082e-09 -.013640444  .0001860617  -2.537964e-06 3135.3908
                  19791791 718 45 0 0 1 1 1 0 .025 .000625   .000015625       .007       .000049 3.4299995e-07 .0012684568 1.6089826e-06  2.040925e-09 -.031824645  .0010128081 -.000032232256 3726.8111
                  19826511 719 49 0 0 1 0 1 0 .025 .000625   .000015625     .00764   .0000583696  4.459437e-07  .001059607  1.122767e-06 1.1896918e-09   .08910543   .007939777    .0007074772 1941.8953
                  25123541 722 49 1 0 1 0 1 1 .025 .000625   .000015625 .032899998   .0010824099 .000035611283  .017125264   .0002932747  5.022406e-06   -8.825028     77.88113      -687.3032 2068.8585
                  19493371 718 49 0 0 1 0 1 0 .025 .000625   .000015625    .005775 .000033350625 1.9259986e-07  .001213488  1.472553e-06 1.7869253e-09 -.031812686   .001012047 -.000032195934 1647.8063
                  20846181 722 49 0 0 1 0 1 1 .025 .000625   .000015625 .032899998   .0010824099 .000035611283  .017125264   .0002932747  5.022406e-06   -8.825028     77.88113      -687.3032 2648.3132
                  21150791 722 46 1 1 1 0 1 1 .025 .000625   .000015625      .0229     .00052441  .00001200899  .013585133  .00018455583 2.5072154e-06   -9.514077     90.51766      -861.1921  804.9287
                  22586171 716  8 0 0 0 0 1 0 .025 .000625   .000015625    .005825 .000033930624 1.9764587e-07 .0006491794  4.214339e-07 2.7358618e-10   .06776895    .00459263    .0003112377 4609.6668
                  19826471 719 49 0 0 1 0 1 0 .025 .000625   .000015625     .00764   .0000583696  4.459437e-07  .001059607  1.122767e-06 1.1896918e-09   .08910543   .007939777    .0007074772 1363.7909
                  19235301 717  8 0 0 0 0 1 0 .025 .000625   .000015625     .00628   .0000394384  2.476732e-07  .000857534  7.353645e-07     6.306e-10   .14971824    .02241555     .003356017 4327.9102
                  end
                  format %tm year_month

                  Comment


                  • #10
                    OK. First the easy part: the varibles ur*_sa and iur* and initrate* that have these bizarre coefficients. It seems that ur2_sa is the square of ur_sa, and ur3_sa is the cube of ur_sa. And similarly for the other families of variables. So you are doing cubic polynomial fits here. There's nothing inherently wrong with doing that, although, frankly, unless you have a good reason to expect a cubic polynomial relationship, you probably shouldn't be doing it. Be that as it may, the problem is that when you start taking squares and cubes of numbers that are far from 1, or whose reciprocals are far from1, the numbers become very extreme. In your case the mean values of the ur_sa , iur, and initrate variables are or magnitude 0.02, 0.01, and 0.004, respectively. So when you take squares and cubes you get these extremely small values, and that requires that the corresponding coefficients (or odds ratios) also take on extreme values due to this scaling. Now, in principle, this isn't a problem. But in computer arithmetic, it is. And the estimations of regression coefficients become numerically unstable in this context. But, it turns out, you have an even bigger problem than scaling with these variables
                    Code:
                    Summary for variables: ur_sa
                    Group variable: reemp3
                    
                      reemp3 |       Min      Mean       Max
                    ---------+------------------------------
                           0 |      .019  .0223306      .025
                           1 |      .019  .0235405      .025
                    ---------+------------------------------
                       Total |      .019  .0226139      .025
                    ----------------------------------------
                    
                    Summary for variables: iur
                    Group variable: reemp3
                    
                      reemp3 |       Min      Mean       Max
                    ---------+------------------------------
                           0 |     .0033   .013654    .05478
                           1 |     .0033   .009807     .0329
                    ---------+------------------------------
                       Total |     .0033  .0127531    .05478
                    ----------------------------------------
                    
                    Summary for variables: initrate
                    Group variable: reemp3
                    
                      reemp3 |       Min      Mean       Max
                    ---------+------------------------------
                           0 |  .0006007  .0050934  .0552681
                           1 |  .0006007  .0023546  .0171253
                    ---------+------------------------------
                       Total |  .0006007   .004452  .0552681
                    ----------------------------------------
                    These variables are not discernibly different in the different categories of reemp3, but the distributions are not quite identical. So Stata is trying to quantify these minuscule differences in the tails of those distributions, and further more to parse that into linear, quadratic, and cubic components. These variables probably don't belong in your model at all. If they do, at most use them linearly. But I think they probably should just be omitted. If there is a strong theoretical reason why they should be used, then I would look very carefully into why their distributions, in your data, are so close to completely independent of reemp3: something apparently is wrong with the data if this is the case.

                    As for the collinearities leading to omitted terms, I am unable to do a complete analysis of this because, as it happens, in your sample the combination of lorech == 0 and prepostperiod_ma == 1 is always associated with reemp3 = 0. This leads to the following warning message when I try to reproduce (a simplified version of) your regression:
                    Code:
                    note: 0.lorech#1.prepostperiod_ma != 0 predicts failure perfectly;
                          0.lorech#1.prepostperiod_ma omitted and 9 obs not used.
                    The omission of that variable might help break some other colinearities, but the omission of those 9 observations might introduce new ones.

                    Nevertheless I have noted that there are strong dependencies among the variables rq, hidh, lorh, and lorech. In particular, of the 2^4 = 16 possible combinations of 0/1 values for these, only 6 actually occur in the pre-period, and only 4 in the post-period. Perhaps in your full data set some more occur. But it seems that there are some strong relationships among these variables, and that is where these colinearities are coming from. You need to reconsider what these variables are and why so many of the theoretically possible combinations never actually happen, and then revise your model so that you are looking at variables that are not so redundant as these. I'm sorry I can't be more specific than that.

                    Comment


                    • #11
                      Clyde, thanks so much for taking the time, and for all this. I'll remove the squared and cubed versions of the state labor market variables; I can't justify removing them altogether, since my outcome is individual reemployment. I'll definitely look into whether something happened with merging, or something somewhere in the data prep process (though spot-checking, the figures seems reasonable...)

                      As to the dependencies between the policy variables, it makes sense, as states that are strict on one measure are likely to be strict on others. An advisor suggested possibly doing a PCA analysis... I have some things to think about!

                      Comment

                      Working...
                      X