Good day statalisters,
I am trying to use the suest command to test if coefficients from a linear regression and an instrumental variables regression are significantly different from one another. I cannot use the Hausman test as I am using survey data with probability weights and cluster-robust standard errors. The data I am using is from the Trends in International Mathematics and Science Study (TIMSS) and the pv package is used to run the regressions with plausible values (ssc install pv).
I am running the following regressions, with model I being the linear regression model and model II being the instrumental variable model (the first stage regression of the IV model was run separately - not shown here):
I then use the suest code as follows:
and it returns the error:
estimation sample of the model saved under II could not be restored
r(198);
Any help would be greatly appreciated! A sample of the data is provided below.
I am trying to use the suest command to test if coefficients from a linear regression and an instrumental variables regression are significantly different from one another. I cannot use the Hausman test as I am using survey data with probability weights and cluster-robust standard errors. The data I am using is from the Trends in International Mathematics and Science Study (TIMSS) and the pv package is used to run the regressions with plausible values (ssc install pv).
I am running the following regressions, with model I being the linear regression model and model II being the instrumental variable model (the first stage regression of the IV model was run separately - not shown here):
Code:
*PV regression pv , pv(math_pv*) jkzone(JKZONE) jkrep(JKREP) weight(TOTWGT) jrr timss: xi: reg @pv MathPR Math_intrinsic i.school_location i.School_safety bullying_SCL Math_class_size Teacher_accountability i.Math_PI i.books_in_home HSES i.speaks_test_language i.student_sex Student_Age [aw=@w], robust cluster(MT_IDTEACH) est store I *IV regression pv , pv(math_pv*) jkzone(JKZONE) jkrep(JKREP) weight(TOTWGT) jrr timss: xi: ivregress 2sls @pv Math_intrinsic i.school_location i.School_safety bullying_SCL Math_class_size Teacher_accountability i.Math_PI i.books_in_home HSES i.speaks_test_language i.student_sex Student_Age (MathPR=SciencePR) [aw=@w] , robust cluster(MT_IDTEACH) est store II
Code:
suest II I
estimation sample of the model saved under II could not be restored
r(198);
Any help would be greatly appreciated! A sample of the data is provided below.
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float(MathPR SciencePR Math_intrinsic) byte(school_location School_safety) float bullying_SCL int Math_class_size float Teacher_accountability byte(Math_PI books_in_home) float HSES byte(speaks_test_language student_sex) double Student_Age .6767668 .28471103 .4267516 0 3 -.1514476 38 .1932887 2 1 -4.589302 1 1 17.25 .6767668 .8832139 .1802771 1 3 1.4730828 45 1.298639 3 0 -4.589302 1 1 15.08 -.4886714 -.3134181 -1.7995194 4 0 1.3955585 64 .1932887 3 0 -4.589302 1 1 14.5 -2.398073 -2.1964524 -2.1793277 0 2 -.9123261 27 -.53621215 1 0 -4.589302 0 0 16.25 -1.4862378 -.27377465 -1.31475 1 2 1.586333 45 .1932887 0 0 -4.589302 0 0 16.08 .6767668 .8832139 .4019347 1 3 3.12654 48 1.298639 3 0 -4.589302 1 1 18 .6767668 .8832139 -.31370085 0 3 -.6166733 38 .1932887 3 0 -4.589302 1 0 15.75 -2.1200454 -1.4422493 .4452515 2 3 -.41079915 46 .1932887 2 0 -4.589302 1 0 17.83 .6767668 .031254113 .8281376 2 2 -1.2932657 42 -1.377403 3 0 -4.589302 1 1 14.58 -1.0380422 -.06092897 .7620944 1 2 -.6267825 98 .7167283 3 1 -4.589302 0 0 16.17 -.6328472 -.6807983 -1.837227 4 2 1.0584339 64 .1932887 2 0 -4.589302 1 0 14.75 -.50897855 .8832139 -.31904855 0 3 .4633826 49 1.298639 3 0 -4.589302 1 1 15.42 .6767668 .8832139 1.2743094 3 3 -.5204309 38 .1932887 3 1 -4.589302 1 1 15.67 .6767668 .8832139 1.2743094 0 3 .51902235 54 .1932887 3 0 -4.589302 1 1 14.5 -.4931108 -.6131534 -.25801075 0 2 1.5123183 68 -.5320541 2 2 -3.9811494 1 1 16.42 -2.386701 -.28272328 -1.5482956 4 1 1.5416265 44 .1932887 3 0 -3.9811494 1 1 15 .3326921 -.9348434 -.4535648 0 3 -.4008917 41 1.298639 3 1 -3.9811494 1 1 14.92 -3.723965 -1.236533 -1.2114418 0 0 1.405856 53 -1.963472 1 0 -3.9811494 1 0 19 -.08936088 .28471103 -.5943833 4 2 -.11315808 115 .7751996 3 0 -3.9811494 1 1 14.67 .6767668 .8832139 1.2743094 0 3 -.7440723 55 -.5320541 3 1 -3.9811494 1 1 15.33 -.08655683 -1.9167427 .4503328 0 1 .02412174 52 .1932887 3 0 -3.9811494 1 1 16.83 -1.3817012 -.6121857 .06787527 0 3 2.3048825 64 .1932887 1 0 -3.9811494 1 0 15.08 -1.0152998 -1.6388594 .826775 0 3 -1.2018198 54 -.6520603 2 1 -3.9811494 1 0 14.25 .6767668 .8832139 .8914233 1 2 .888905 57 .7751996 3 0 -3.9811494 1 1 14.5 -.8729917 .8832139 1.0744292 0 3 1.5933495 25 1.298639 3 0 -3.9811494 1 0 16 .6767668 .8832139 .23092845 1 3 2.3528757 98 .7167283 3 0 -3.9811494 0 0 16.42 -1.4373527 .2460354 -.40170285 0 3 .27704683 74 .1932887 2 0 -3.9811494 1 0 17.33 .6767668 .54480296 .53784347 4 3 1.97683 115 .7751996 2 0 -3.9811494 1 1 14.67 -.1876462 .8832139 -.6659923 4 1 .5979941 49 -1.963472 2 1 -3.9811494 1 1 16.5 .6767668 .0380227 .5431357 1 3 1.678239 47 .7167283 3 1 -3.9811494 0 1 16.67 .6767668 .8832139 1.2743094 3 3 -.7096612 37 1.298639 3 1 -3.9811494 1 1 14.83 .6767668 .8832139 .7848208 0 3 3.12654 40 -1.377403 3 0 -3.9811494 3 0 17.17 -.14903605 -1.3569423 .26118279 0 2 .7417966 26 1.298639 2 0 -3.9811494 1 1 14.5 -2.3629801 -1.620542 -.2012464 4 3 1.3312018 44 .1932887 3 2 -3.9811494 1 0 17 -1.5336967 -1.388952 -.8166596 0 3 .7668611 52 -1.9159825 1 1 -3.9811494 1 1 14.5 -1.8983575 .56211215 -1.6178962 0 3 2.707776 80 1.298639 3 0 -3.9811494 1 1 16.67 -1.0380422 -.8168808 -.54815 0 3 2.708467 34 .1932887 2 0 -3.9811494 0 0 16.58 .23440674 .56211215 .7472612 4 2 .1809394 32 -.5320541 2 1 -3.9811494 1 0 17.75 -.8731431 -.8168808 -.5430655 2 2 1.1192192 108 .7167283 3 3 -3.9811494 1 0 15.5 .6767668 .8832139 -.16184653 1 3 -.7819822 98 .7167283 3 1 -3.9811494 1 1 15.75 -.08936088 -.48557475 1.2743094 4 3 .025976947 50 .7751996 2 0 -3.9811494 1 0 16.08 -.50897855 .066968136 -.737709 1 3 1.5274576 98 .7167283 0 2 -3.9811494 1 0 17.17 -1.5813745 -.8717746 -1.776383 1 3 1.4048352 42 -1.377403 2 0 -3.9811494 3 0 15.75 .6767668 .8832139 .7377237 0 3 1.2076674 62 .1932887 2 0 -3.9811494 1 1 16.67 -.9921886 .00929958 .692853 4 3 -1.2932657 52 .04985677 0 0 -3.9811494 1 0 17.75 -1.506321 .2450676 -1.602127 0 2 -.50277036 59 1.298639 2 2 -3.9811494 1 0 15.5 -.9310315 -.7078685 -.17841627 1 2 -1.2041543 58 -1.377403 2 1 -3.9811494 1 0 16.58 .6767668 -.06092897 -.06228221 1 3 1.382715 51 .1932887 3 0 -3.9811494 1 1 16.17 .6767668 .54480296 -1.02053 1 3 1.0347371 68 .1932887 2 0 -3.9811494 0 0 14.92 -.1876462 .2623768 .20205447 1 3 2.19184 98 .7167283 3 1 -3.9811494 1 1 14.92 .6767668 .8832139 -.3391902 4 3 -.7987245 35 -1.377403 3 0 -3.9811494 1 1 14.17 .6767668 .331971 -1.6076163 2 3 .9323292 38 .1932887 3 1 -3.9811494 1 1 14.67 -1.7787747 -.6807983 -.4196265 0 3 -.5386193 26 1.298639 3 0 -3.9811494 1 1 14.42 -.4931108 -1.320598 1.0744292 3 3 -.37180355 73 -.6520603 1 1 -3.9811494 1 1 14.83 -1.204492 .031254113 -.22387725 3 3 1.3898066 56 .7751996 3 4 -3.9811494 0 0 15.42 .25471392 . .7156831 1 3 .8750167 40 .1932887 1 0 -3.9811494 3 0 17 -.06661846 .8832139 -.4196265 0 2 -.9585081 56 .7167283 2 1 -3.9811494 1 0 15.08 .25471392 .8832139 -.5868443 4 3 .4673751 36 .1932887 2 0 -3.9811494 1 1 16.67 -.9907067 . -.08446168 1 3 .5973586 39 -1.118123 2 0 -3.9811494 3 1 14.67 -.4886714 -.8194182 -.25841075 4 3 1.472912 38 .1932887 2 0 -3.9811494 1 0 16.08 .6767668 .28471103 -.9018676 1 2 1.690691 86 .1932887 0 0 -3.9811494 1 0 15.75 .6767668 .8832139 -.6113003 2 3 1.3681393 62 .1932887 3 0 -3.9811494 1 0 17.42 -1.276893 .010869186 .11541858 0 3 1.5890336 49 -.5320541 2 0 -3.9811494 1 0 18 -.6509178 .8832139 -.7205046 4 3 .8208346 49 -1.963472 3 0 -3.9811494 1 0 15.08 .3326921 .5772174 1.2743094 1 3 1.1710728 43 1.298639 3 0 -3.9811494 1 1 14.92 -1.5521773 -.6351079 -1.7949414 3 0 .3045433 38 -.5320541 2 1 -3.9811494 1 0 14.33 .6767668 -.04265196 .28936982 1 3 -1.1683102 49 .1932887 3 1 -3.9811494 1 1 15.17 -.10966805 -1.1349068 .4929727 0 3 -.1014244 52 -1.9159825 3 1 -3.9811494 1 1 15.67 .27745634 .28471103 -.9452633 4 3 .6020373 43 .1932887 3 0 -3.9811494 2 0 16.33 .6767668 .8832139 .8281376 1 3 -.980961 55 1.298639 3 0 -3.9811494 0 0 15.67 .6767668 -.6807983 1.2743094 0 3 -.7394847 41 -2.502051 3 1 -3.9811494 2 0 15.75 .6767668 .5844464 -1.3518157 1 3 1.5442594 59 -.5320541 0 0 -3.9811494 1 0 15.67 .6767668 .8832139 .6300222 0 3 -.701727 54 -.6520603 3 0 -3.9811494 1 1 16.17 -.4886714 .22370116 -.4196265 3 2 1.818362 52 .7751996 2 1 -3.9811494 1 0 16.83 -.1876462 -.27279314 -.30543435 1 2 1.7959652 98 .7167283 2 0 -3.9811494 3 0 17.42 .6767668 .8832139 .16473973 1 3 2.0171459 42 -.5320541 3 0 -3.9811494 1 0 15 .23440674 -.04265196 .22787303 1 2 1.3404462 55 -1.377403 2 1 -3.9811494 1 0 18 .25471392 .28471103 1.0280179 2 3 -.27180627 45 -.5320541 3 1 -3.9811494 1 0 16.83 -1.97363 -.006440024 -.2032803 4 0 2.0713465 52 -.5320541 1 1 -3.9811494 1 1 17.5 .6767668 -2.1472397 1.2743094 0 2 -.2355946 80 1.298639 3 1 -3.939518 2 0 14.83 .6767668 .8832139 .7848208 1 2 -.3032076 39 -1.377403 3 2 -3.939518 1 1 15.58 .6767668 .2623768 .6696445 0 2 .8395413 97 .7751996 3 2 -3.939518 1 1 17.58 -.10966805 -.04361976 .5804835 1 3 1.2820423 52 .7751996 2 1 -3.939518 1 1 17.17 .6767668 .05481461 -.9334217 1 3 -1.2932657 98 .7167283 3 0 -3.939518 0 1 18.33 .6767668 .5844464 .26014954 0 2 .7253527 118 1.298639 3 0 -3.939518 1 0 15.67 .6767668 .54480296 1.2743094 0 3 1.1173382 42 .1932887 3 4 -3.939518 3 1 14.33 -.4963766 -.25190526 .28401294 1 2 .4525651 49 .1932887 1 1 -3.939518 3 1 14.5 .6767668 .8832139 1.0744292 4 3 1.7825637 35 -1.377403 2 2 -3.939518 2 1 15.25 -1.1488405 -.25075212 .6300222 0 0 .627751 68 -.5320541 3 4 -3.939518 0 1 15.25 .24574797 .3542316 .763096 0 3 .4099571 60 -.5320541 3 1 -3.939518 1 1 15.58 .6767668 -1.1578292 1.2743094 2 3 1.31917 72 1.298639 2 1 -3.939518 1 0 15.67 .6767668 .3309895 -1.213872 0 2 1.1181397 60 -.5320541 2 2 -3.939518 1 1 14.25 -.9151638 -1.0505408 -.02984388 0 0 -.08003784 12 .7751996 3 0 -3.939518 0 1 16.08 -1.7786235 -.6807983 -.066014454 0 2 -.7923887 108 .7751996 2 1 -3.939518 1 1 14.67 -3.418566 -1.8917173 -.31636 0 3 1.8106883 74 .1932887 1 3 -3.939518 2 1 15 .6767668 .5834786 -1.353957 0 1 -.7161782 16 .1932887 2 0 -3.939518 0 1 14.33 .6767668 .8832139 1.2743094 2 3 -.7654406 76 -1.377403 3 2 -3.939518 1 1 16.42 -.56033766 -.54194343 .6730431 0 3 2.5043385 64 1.298639 3 1 -3.939518 1 0 14.5 -.10966805 -2.092257 1.2743094 3 3 -.321905 40 .1932887 3 0 -3.939518 1 0 13.92 -1.356722 .033129778 -.6265423 4 3 1.1741279 39 -1.377403 0 1 -3.939518 1 1 17.08 end label values school_location BCBG05B label def BCBG05B 0 "Remote rural", modify label def BCBG05B 1 "Small town", modify label def BCBG05B 2 "Medium City", modify label def BCBG05B 3 "Suburban", modify label def BCBG05B 4 "Urban", modify label values School_safety agreedisagree_4op_pos label values Math_PI agreedisagree_4op_pos label def agreedisagree_4op_pos 0 "Disagree a lot", modify label def agreedisagree_4op_pos 1 "Disagree a little", modify label def agreedisagree_4op_pos 2 "Agree a little", modify label def agreedisagree_4op_pos 3 "Agree a lot", modify label values books_in_home BSBG04 label def BSBG04 0 "None or very few (0-10 books)", modify label def BSBG04 1 "Enough to fill one shelf (11-25 books)", modify label def BSBG04 2 "Enough to fill one bookcase (26-100 books)", modify label def BSBG04 3 "Enough to fill two bookcases (101-200 books)", modify label def BSBG04 4 "Enough to fill three or more bookcases (more than 200)", modify label values speaks_test_language neveralways_4options_pos label def neveralways_4options_pos 0 "Never", modify label def neveralways_4options_pos 1 "Sometimes", modify label def neveralways_4options_pos 2 "Almost Always", modify label def neveralways_4options_pos 3 "Always", modify label values student_sex boygirl label def boygirl 0 "Boy", modify label def boygirl 1 "Girl", modify
Comment