Dear Statalist,
I am writing to ask for help interpreting the coefficient with the mean dependent variable.
In my panel (id, year) dataset, I have yvar (number of accident), xvar (treatment), and instrument.
Given that all the assumption holds for IV, how can I interpret the coefficient from the second stage compared to mean dependent value?
As far as I know, in OLS or DID, mean dependent variable is reported to interpret the coefficient compared to the mean value.
Does this apply to IV as well?
What if the coefficient is way l larger than mean of dependent value then?
For example, from my result shows coefficient of xvar = -0.31 and mean of the dependent value = 0.09
So, if the value of xvar increases by one unit (treated), yvar (accident) goes down by 0.31?
And, compared to control group, how can I use mean value to interpret this coefficient?
All the data, code, and results are following:
Thank you so much for your help in advance.
copy starting from the next line ------- ---------------
copy up to and including the previous line -- ---------------
Variable Obs Mean Std. dev. Min Max
id 11,858 897.3237 525.8204 7 1845
year 11,858 1991 3.162411 1986 1996
yvar 11,858 .0766571 .3330643 0 5
instrument 9,405 222.899 30.43519 100.4544 305.2475
xvar 11,858 .1174149 .2468511 0 1
The code I use for 2sls:
Result:
yvar Coefficient std. err. z P>z [95% conf. interval]
xvar -.3174492 .1749153 -1.81 0.070 -.6602769 .0253784
_cons .2543608 .0902381 2.82 0.005 .0774975 .4312242
e(ymean) = .09059011
I am writing to ask for help interpreting the coefficient with the mean dependent variable.
In my panel (id, year) dataset, I have yvar (number of accident), xvar (treatment), and instrument.
Given that all the assumption holds for IV, how can I interpret the coefficient from the second stage compared to mean dependent value?
As far as I know, in OLS or DID, mean dependent variable is reported to interpret the coefficient compared to the mean value.
Does this apply to IV as well?
What if the coefficient is way l larger than mean of dependent value then?
For example, from my result shows coefficient of xvar = -0.31 and mean of the dependent value = 0.09
So, if the value of xvar increases by one unit (treated), yvar (accident) goes down by 0.31?
And, compared to control group, how can I use mean value to interpret this coefficient?
All the data, code, and results are following:
Thank you so much for your help in advance.
copy starting from the next line ------- ---------------
Code:
* Example generated by -dataex-. For more info, type help dataex clear input int id float year byte yvar float(instrument xvar) 7 1986 0 189.87224 0 7 1987 0 192.2707 0 7 1988 0 192.7204 0 7 1989 0 191.68484 0 7 1990 0 193.5854 0 7 1991 0 190.0769 0 7 1992 0 194.39555 0 7 1993 0 188.67802 1 7 1994 0 193.45345 1 7 1995 0 192.5287 1 7 1996 0 191.7457 1 8 1986 0 196.9478 0 8 1987 0 199.43567 0 8 1988 0 199.9021 0 8 1989 0 198.82797 0 8 1990 0 200.79936 0 8 1991 0 197.16013 0 8 1992 0 201.6397 0 8 1993 0 195.7091 0 8 1994 0 200.66248 0 8 1995 0 199.70326 1 8 1996 0 198.8911 1 19 1986 0 238.9022 1 19 1987 0 241.92 1 19 1988 0 242.4858 1 19 1989 0 241.18288 1 19 1990 0 243.5742 1 19 1991 0 239.15973 1 19 1992 0 244.59355 1 19 1993 0 237.3996 1 19 1994 0 243.40817 1 19 1995 0 242.24463 1 19 1996 0 241.2594 1 20 1986 0 225.95587 0 20 1987 1 228.81015 0 20 1988 0 229.3453 0 20 1989 0 228.11296 1 20 1990 0 230.3747 1 20 1991 0 226.19945 1 20 1992 0 231.3388 1 20 1993 0 224.5347 1 20 1994 0 230.21767 1 20 1995 0 229.11717 1 20 1996 0 228.18536 1 21 1986 0 223.52946 0 21 1987 0 226.3531 0 21 1988 0 226.8825 0 21 1989 0 225.66338 0 21 1990 0 227.90085 0 21 1991 0 223.7704 0 21 1992 0 228.8546 0 21 1993 0 222.12357 0 21 1994 0 227.7455 0 21 1995 0 226.6568 0 21 1996 0 225.735 0 22 1986 0 214.83475 0 22 1987 0 217.54854 0 22 1988 0 218.05734 0 22 1989 0 216.88565 0 22 1990 0 219.0361 0 22 1991 0 215.06633 0 22 1992 0 219.95274 0 22 1993 0 213.4835 0 22 1994 1 218.8868 0 22 1995 0 217.84044 0 22 1996 0 216.9545 1 23 1986 0 259.33914 1 23 1987 1 262.6151 1 23 1988 0 263.22934 1 23 1989 0 261.8149 1 23 1990 0 264.41083 1 23 1991 0 259.6187 1 23 1992 0 265.51736 1 23 1993 1 257.70804 1 23 1994 0 264.2306 1 23 1995 0 262.9675 1 23 1996 0 261.898 1 24 1986 1 261.66428 0 24 1987 0 264.96964 1 24 1988 1 265.58936 1 24 1989 0 264.16226 1 24 1990 0 266.78143 1 24 1991 0 261.94635 1 24 1992 0 267.8979 1 24 1993 0 260.01852 1 24 1994 0 266.59958 1 24 1995 0 265.32516 1 24 1996 0 264.2461 1 25 1986 3 249.57635 0 25 1987 0 252.729 0 25 1988 1 253.3201 1 25 1989 1 251.95892 1 25 1990 1 254.4571 1 25 1991 1 249.8454 1 25 1992 1 255.522 1 25 1993 0 248.0066 1 25 1994 0 254.28365 1 25 1995 0 253.0681 1 25 1996 0 252.0389 1 26 1986 0 249.85435 0 end
Variable Obs Mean Std. dev. Min Max
id 11,858 897.3237 525.8204 7 1845
year 11,858 1991 3.162411 1986 1996
yvar 11,858 .0766571 .3330643 0 5
instrument 9,405 222.899 30.43519 100.4544 305.2475
xvar 11,858 .1174149 .2468511 0 1
The code I use for 2sls:
Code:
xtset id year eststo: xtivreg yvar (xvar = instrument), fe vce(cluster id) estadd ysumm esttab using t1.csv, se star(* 0.10 ** 0.05 *** 0.01) stats(N N_g ymean) b(%9.3f) replace
yvar Coefficient std. err. z P>z [95% conf. interval]
xvar -.3174492 .1749153 -1.81 0.070 -.6602769 .0253784
_cons .2543608 .0902381 2.82 0.005 .0774975 .4312242
e(ymean) = .09059011
Comment