gen post_treat=post*treat
. reg lwage post treat post_treat age age2 educ marr i.year i.nuts2[pw=faktor] if sex==1&occ==3,robu
> st
(sum of wgt is 7.4033e+03)
note: post_treat omitted because of collinearity
note: 2017.year omitted because of collinearity
Linear regression Number of obs = 44,921
F(37, 44883) = 539.86
Prob > F = 0.0000
R-squared = 0.3403
Root MSE = .44571
------------------------------------------------------------------------------
| Robust
lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
post | .4238119 .0102254 41.45 0.000 .40377 .4438538
treat | -.0369555 .0154131 -2.40 0.017 -.0671655 -.0067455
post_treat | 0 (omitted)
age | .0847557 .0018631 45.49 0.000 .081104 .0884075
age2 | -.0008307 .0000238 -34.93 0.000 -.0008773 -.0007841
educ | .0358419 .0005541 64.68 0.000 .0347558 .0369279
marr | .0871471 .0068072 12.80 0.000 .0738049 .1004894
|
year |
2010 | .0387298 .0101107 3.83 0.000 .0189127 .058547
2011 | .014438 .0098914 1.46 0.144 -.0049493 .0338253
2012 | .083935 .0098663 8.51 0.000 .0645969 .1032732
2014 | -.0232724 .0101649 -2.29 0.022 -.0431957 -.0033491
2015 | -.0296179 .0090395 -3.28 0.001 -.0473356 -.0119003
2016 | .0329562 .0087692 3.76 0.000 .0157685 .0501439
2017 | 0 (omitted)
|
nuts2 |
2 | -.1027361 .0138094 -7.44 0.000 -.1298026 -.0756695
3 | -.1496527 .0138345 -10.82 0.000 -.1767686 -.1225368
4 | -.1004428 .0106298 -9.45 0.000 -.1212774 -.0796082
5 | -.1525408 .014484 -10.53 0.000 -.1809296 -.124152
6 | -.0892759 .0126839 -7.04 0.000 -.1141367 -.0644152
7 | -.0956869 .0108507 -8.82 0.000 -.1169544 -.0744195
8 | -.077937 .0113978 -6.84 0.000 -.1002768 -.0555972
9 | .0466174 .0087169 5.35 0.000 .0295322 .0637026
10 | -.1937992 .0117453 -16.50 0.000 -.2168201 -.1707783
11 | -.0710223 .0134255 -5.29 0.000 -.0973366 -.0447081
12 | -.1526589 .0126282 -12.09 0.000 -.1774104 -.1279075
13 | -.1176439 .0166561 -7.06 0.000 -.1502902 -.0849976
14 | -.0231412 .0130792 -1.77 0.077 -.0487766 .0024942
15 | -.1461342 .0168414 -8.68 0.000 -.1791437 -.1131247
16 | -.058647 .0209157 -2.80 0.005 -.0996422 -.0176518
17 | .060174 .0139931 4.30 0.000 .0327473 .0876007
18 | -.0617659 .0149964 -4.12 0.000 -.0911591 -.0323728
19 | -.0685764 .0150703 -4.55 0.000 -.0981145 -.0390383
20 | .0008685 .0135818 0.06 0.949 -.025752 .027489
21 | -.0320731 .0217177 -1.48 0.140 -.0746401 .0104939
22 | -.106684 .0179845 -5.93 0.000 -.1419338 -.0714341
23 | .0413375 .018963 2.18 0.029 .0041697 .0785053
24 | -.182834 .0165629 -11.04 0.000 -.2152976 -.1503704
25 | -.0617177 .0189648 -3.25 0.001 -.098889 -.0245464
26 | .024102 .0229077 1.05 0.293 -.0207975 .0690016
|
_cons | -1.341882 .0336223 -39.91 0.000 -1.407782 -1.275981
------------------------------------------------------------------------------
hello
I'm doing a study on the effect of refugees on wages. But post_treat comes up with such a result. I'm a bit of a novice at Stata. The result is like this in DID, how can I solve this problem. Thanks
. reg lwage post treat post_treat age age2 educ marr i.year i.nuts2[pw=faktor] if sex==1&occ==3,robu
> st
(sum of wgt is 7.4033e+03)
note: post_treat omitted because of collinearity
note: 2017.year omitted because of collinearity
Linear regression Number of obs = 44,921
F(37, 44883) = 539.86
Prob > F = 0.0000
R-squared = 0.3403
Root MSE = .44571
------------------------------------------------------------------------------
| Robust
lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
post | .4238119 .0102254 41.45 0.000 .40377 .4438538
treat | -.0369555 .0154131 -2.40 0.017 -.0671655 -.0067455
post_treat | 0 (omitted)
age | .0847557 .0018631 45.49 0.000 .081104 .0884075
age2 | -.0008307 .0000238 -34.93 0.000 -.0008773 -.0007841
educ | .0358419 .0005541 64.68 0.000 .0347558 .0369279
marr | .0871471 .0068072 12.80 0.000 .0738049 .1004894
|
year |
2010 | .0387298 .0101107 3.83 0.000 .0189127 .058547
2011 | .014438 .0098914 1.46 0.144 -.0049493 .0338253
2012 | .083935 .0098663 8.51 0.000 .0645969 .1032732
2014 | -.0232724 .0101649 -2.29 0.022 -.0431957 -.0033491
2015 | -.0296179 .0090395 -3.28 0.001 -.0473356 -.0119003
2016 | .0329562 .0087692 3.76 0.000 .0157685 .0501439
2017 | 0 (omitted)
|
nuts2 |
2 | -.1027361 .0138094 -7.44 0.000 -.1298026 -.0756695
3 | -.1496527 .0138345 -10.82 0.000 -.1767686 -.1225368
4 | -.1004428 .0106298 -9.45 0.000 -.1212774 -.0796082
5 | -.1525408 .014484 -10.53 0.000 -.1809296 -.124152
6 | -.0892759 .0126839 -7.04 0.000 -.1141367 -.0644152
7 | -.0956869 .0108507 -8.82 0.000 -.1169544 -.0744195
8 | -.077937 .0113978 -6.84 0.000 -.1002768 -.0555972
9 | .0466174 .0087169 5.35 0.000 .0295322 .0637026
10 | -.1937992 .0117453 -16.50 0.000 -.2168201 -.1707783
11 | -.0710223 .0134255 -5.29 0.000 -.0973366 -.0447081
12 | -.1526589 .0126282 -12.09 0.000 -.1774104 -.1279075
13 | -.1176439 .0166561 -7.06 0.000 -.1502902 -.0849976
14 | -.0231412 .0130792 -1.77 0.077 -.0487766 .0024942
15 | -.1461342 .0168414 -8.68 0.000 -.1791437 -.1131247
16 | -.058647 .0209157 -2.80 0.005 -.0996422 -.0176518
17 | .060174 .0139931 4.30 0.000 .0327473 .0876007
18 | -.0617659 .0149964 -4.12 0.000 -.0911591 -.0323728
19 | -.0685764 .0150703 -4.55 0.000 -.0981145 -.0390383
20 | .0008685 .0135818 0.06 0.949 -.025752 .027489
21 | -.0320731 .0217177 -1.48 0.140 -.0746401 .0104939
22 | -.106684 .0179845 -5.93 0.000 -.1419338 -.0714341
23 | .0413375 .018963 2.18 0.029 .0041697 .0785053
24 | -.182834 .0165629 -11.04 0.000 -.2152976 -.1503704
25 | -.0617177 .0189648 -3.25 0.001 -.098889 -.0245464
26 | .024102 .0229077 1.05 0.293 -.0207975 .0690016
|
_cons | -1.341882 .0336223 -39.91 0.000 -1.407782 -1.275981
------------------------------------------------------------------------------
hello
I'm doing a study on the effect of refugees on wages. But post_treat comes up with such a result. I'm a bit of a novice at Stata. The result is like this in DID, how can I solve this problem. Thanks
Comment