Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Testing for parallel trends in DiD?

    Hi,

    I'm trying to test for parallel trends in a DiD using the following data:
    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input long state int year_born float(y mdate_birth ym_born_after treatmentstate)
     3 2001 0 492 0 1
    30 2001 0 499 0 0
    24 2001 0 503 0 0
    23 2001 0 497 0 0
    36 2001 0 492 0 0
    30 2001 0 500 0 0
    23 2001 0 499 0 0
    23 2001 0 500 0 0
    23 2001 0 497 0 0
    23 2001 0 500 0 0
     3 2001 0 503 0 1
    24 2001 0 502 0 0
    10 2001 0 493 0 0
     3 2001 0 499 0 1
    23 2001 0 492 0 0
    23 2001 0 492 0 0
    30 2001 0 494 0 0
    20 2001 0 502 0 0
    20 2001 0 494 0 0
    24 2001 0 497 0 0
    24 2001 0 499 0 0
    23 2001 0 501 0 0
    30 2001 0 501 0 0
    36 2001 0 493 0 0
    10 2001 0 503 0 0
    24 2001 0 496 0 0
    23 2001 0 501 0 0
    24 2001 0 496 0 0
    24 2001 0 494 0 0
    30 2001 0 497 0 0
    30 2001 0 503 0 0
    23 2001 0 502 0 0
    10 2001 0 501 0 0
    23 2001 0 493 0 0
    24 2001 1 499 0 0
    23 2001 0 501 0 0
    36 2001 0 492 0 0
    20 2001 0 498 0 0
    10 2001 0 501 0 0
     3 2001 0 494 0 1
    36 2001 1 500 0 0
    36 2001 0 499 0 0
    23 2001 0 497 0 0
    36 2001 0 498 0 0
    36 2001 0 503 0 0
    23 2001 0 502 0 0
    23 2001 1 493 0 0
    20 2001 0 494 0 0
    36 2001 1 503 0 0
    24 2001 0 494 0 0
    10 2001 0 492 0 0
    36 2001 0 500 0 0
    30 2001 0 503 0 0
    23 2001 0 499 0 0
    30 2001 0 501 0 0
    23 2001 0 495 0 0
    24 2001 0 499 0 0
    10 2001 0 500 0 0
    23 2001 0 500 0 0
    36 2001 0 503 0 0
    30 2001 0 494 0 0
    20 2001 0 498 0 0
    30 2001 0 500 0 0
    20 2001 0 492 0 0
    24 2001 0 495 0 0
    23 2001 0 495 0 0
    20 2001 0 503 0 0
    36 2001 0 496 0 0
    36 2001 0 494 0 0
    10 2001 0 497 0 0
    30 2001 0 497 0 0
    10 2001 0 501 0 0
    24 2001 1 492 0 0
    30 2001 0 492 0 0
    20 2001 0 493 0 0
    23 2001 0 502 0 0
    30 2001 0 500 0 0
    24 2001 0 495 0 0
     3 2001 0 492 0 1
    36 2001 0 499 0 0
    23 2001 0 499 0 0
    20 2001 0 496 0 0
    30 2001 0 499 0 0
    23 2001 0 502 0 0
    36 2001 0 501 0 0
    23 2001 0 496 0 0
    20 2001 1 503 0 0
     3 2001 0 502 0 1
    36 2001 0 495 0 0
    10 2001 0 493 0 0
    36 2001 0 503 0 0
    20 2001 0 495 0 0
    36 2001 0 499 0 0
    36 2001 0 492 0 0
    20 2001 1 503 0 0
    30 2001 1 502 0 0
    30 2001 0 503 0 0
    24 2001 0 494 0 0
     3 2001 0 502 0 1
    36 2001 0 492 0 0
    end
    format %tm mdate_birth
    label values state state1
    label values y binarylabel
    y=outcome variable
    mdate_birth=month-year of birth
    ym_born_after= whether month-year of birth is after policy introduction
    treatmentstate=whether state has policy
    year_born=year of birth

    I performed DiD with following specification:
    Code:
    areg y i.treatmentstate##i.ym_born_after i.state, absorb(year_born) cluster(cluster)
    I now want to test for parallel trends using leads and lags of interaction between time dummy and treatment dummy, as shown in https://stats.stackexchange.com/a/160361

    Thus in my case leads and lags on (dummies from mdate_birth)*treatmentstate

    However I have numerous values of mdate_birth and thus makes it impossible to enter all of these interaction terms by hand in the regression equation. Is there any simpler way of doing this test using the method I outlined?

    Secondly I want to produce graphs that look like the one attached
    Click image for larger version

Name:	did graph.png
Views:	1
Size:	45.4 KB
ID:	1691866

    I have been using a simple line graph but they dont look very nice and would appreciate any help.

    Please let me know if you need further clarifications to answer this question. Looking forward to your reply.
    Last edited by Titir Bhattacharya; 03 Dec 2022, 01:11.

  • #2
    Show me the code you've tried. You can use collapse to average your treatments and controls and plot their lines

    Comment

    Working...
    X