I'm considering the following linear model:
which is rewritten as:
yijt = b + (a-b) * shareijt + FE_Ii + FE_Jj + eit
I'm interested in estimating the coefficients a and b.
To control the two fixed effects, I use reghdfe package (version 5.7.3 13nov2019), but I'm having trouble retrieving b from the estimated constant from the following code :
If I know what is the baseline i and j, I think adding the baseline i and j's fixed effects will give me b.
Unfortunately, I couldn't find from the estimation result which i and j the package picks.
I would really appreciate having thoughts on solving this issue.
- example data :
- result 1 :
- result 2 :
yijt = a * shareijt + b * (1-shareijt) + FE_Ii + FE_Jj + eijt
which is rewritten as:
yijt = b + (a-b) * shareijt + FE_Ii + FE_Jj + eit
I'm interested in estimating the coefficients a and b.
To control the two fixed effects, I use reghdfe package (version 5.7.3 13nov2019), but I'm having trouble retrieving b from the estimated constant from the following code :
Code:
reghdfe y share, absorb(FE_I FE_J) noconstant
Unfortunately, I couldn't find from the estimation result which i and j the package picks.
I would really appreciate having thoughts on solving this issue.
- example data :
Code:
* Example generated by -dataex-. For more info, type help dataex clear input int(rep78 FE_I) byte FE_J double(share one_minus_share) 3 0 0 14.512820512820513 -13.512820512820513 2 0 0 17.475728155339805 -16.475728155339805 3 0 0 19.054726368159205 -18.054726368159205 3 0 0 20.7725321888412 -19.7725321888412 3 0 0 17.02020202020202 -16.02020202020202 4 0 0 19.032258064516128 -18.032258064516128 5 1 0 13.006134969325153 -12.006134969325153 4 0 0 18.454545454545453 -17.454545454545453 3 1 0 12.94478527607362 -11.94478527607362 3 0 0 17.547169811320753 -16.547169811320753 3 0 0 16.581632653061224 -15.581632653061224 3 0 0 13.333333333333334 -12.333333333333334 3 0 0 20.52173913043478 -19.52173913043478 3 0 0 19.563106796116504 -18.563106796116504 2 0 0 15.363128491620111 -14.363128491620111 3 0 0 21.029411764705884 -20.029411764705884 4 0 0 15.266272189349113 -14.266272189349113 3 0 0 15.970149253731343 -14.970149253731343 3 1 0 19.176470588235293 -18.176470588235293 2 0 0 16.1 -15.100000000000001 3 0 0 16.834862385321102 -15.834862385321102 3 0 0 15.75268817204301 -14.75268817204301 2 0 0 19.11764705882353 -18.11764705882353 3 0 0 19.592760180995477 -18.592760180995477 3 0 1 11.89655172413793 -10.89655172413793 4 0 1 13.411764705882353 -12.411764705882353 4 0 1 12.55813953488372 -11.55813953488372 4 0 1 12.756410256410257 -11.756410256410257 5 1 1 13.161290322580646 -12.161290322580646 5 0 1 14.973544973544973 -13.973544973544973 5 0 1 15.257142857142858 -14.257142857142858 5 0 1 13.023255813953488 -12.023255813953488 5 1 1 12.5 -11.5 4 1 1 11.812080536912752 -10.812080536912752 4 0 1 13.941176470588236 -12.941176470588236 end label values FE_J origin label def origin 0 "Domestic", modify label def origin 1 "Foreign", modify
- result 1 :
Code:
reghdfe y share, absorb(FE_I FE_J) noconstant
Code:
HDFE Linear regression Number of obs = 35 Absorbing 2 HDFE groups F( 1, 31) = 0.13 Prob > F = 0.7257 R-squared = 0.5177 Adj R-squared = 0.4710 Within R-sq. = 0.0040 Root MSE = 0.6681 ------------------------------------------------------------------------------ rep78 | Coefficient Std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- share | .0205182 .0579482 0.35 0.726 -.097668 .1387044 _cons | 3.129253 .9328981 3.35 0.002 1.226595 5.031911 ------------------------------------------------------------------------------ Absorbed degrees of freedom: -----------------------------------------------------+ Absorbed FE | Categories - Redundant = Num. Coefs | -------------+---------------------------------------| FE_I | 2 0 2 | FE_J | 2 1 1 | -----------------------------------------------------+
- result 2 :
Code:
reghdfe y share one_minus_share, absorb(FE_I FE_J) noconstant
Code:
HDFE Linear regression Number of obs = 35 Absorbing 2 HDFE groups F( 1, 31) = 0.13 Prob > F = 0.7257 R-squared = 0.5177 Adj R-squared = 0.4710 Within R-sq. = 0.0040 Root MSE = 0.6681 --------------------------------------------------------------------------------- rep78 | Coefficient Std. err. t P>|t| [95% conf. interval] ----------------+---------------------------------------------------------------- share | .0205182 .0579482 0.35 0.726 -.097668 .1387044 one_minus_share | 0 (omitted) --------------------------------------------------------------------------------- Absorbed degrees of freedom: -----------------------------------------------------+ Absorbed FE | Categories - Redundant = Num. Coefs | -------------+---------------------------------------| FE_I | 2 0 2 | FE_J | 2 1 1 | -----------------------------------------------------+
Comment