Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Regression_Low R2 value

    Hello,

    I am running regression on dataset I have, First I applied Factor analysis over the dataset (Questioner dataset), then I got the scores of factors. I am trying to see the impact of other variables in predicting my factors, I am getting very low R2 values.
    In literature I see they used logistic regression which not make sense to me as the Y variable is continuous. The results I am getting as follows:
    Code:
    ------------------------------------------------------------------------------------------------------------
                          (1)             (2)             (3)             (4)             (5)             (6)   
                      factor1         factor2         factor3         factor4         factor5         factor6   
    ------------------------------------------------------------------------------------------------------------
    edu_level          0.0129***      0.00534          0.0155***    -0.000643         0.00289          0.0256***
                       (3.38)          (1.43)          (4.18)         (-0.15)          (0.77)          (6.60)   
    
    daily_acti~y      -0.0246***      -0.0225**       -0.0221**       -0.0241**       -0.0187*        -0.0171*  
                      (-3.49)         (-3.04)         (-3.08)         (-2.85)         (-2.49)         (-2.05)   
    
    walk_bik          -0.0380*         0.0594***      0.00585          0.0683***       0.0514**        0.0789***
                      (-2.33)          (3.59)          (0.39)          (3.65)          (3.08)          (4.82)   
    
    perecnt_sm~y      0.00137         0.00437         -0.0282***     -0.00683         0.00442         -0.0631***
                       (0.20)          (0.60)         (-3.89)         (-0.79)          (0.55)         (-6.79)   
    
    percent_po~y      -0.0307***      0.00375        -0.00604          0.0282**       -0.0244**        0.0644***
                      (-3.72)          (0.40)         (-0.70)          (2.88)         (-2.64)          (6.12)   
    
    _cons               0.820**        -0.157           0.439          -0.127           0.524          -1.060** 
                       (2.80)         (-0.49)          (1.42)         (-0.34)          (1.63)         (-2.94)   
    ------------------------------------------------------------------------------------------------------------
    N                    2419            2419            2419            2419            2419            2419   
    adj. R-sq           0.037           0.027           0.062           0.016           0.035           0.087   
    ------------------------------------------------------------------------------------------------------------
    I think this means, no linear relationship between dependent and independent variables. I am thinking about using non-linear regression. But I do not know how to use that? or should I use one of transformation techniques to tackle the the non-linearity? Any suggestions?

  • #2
    Click image for larger version

Name:	image_29358.png
Views:	1
Size:	123.6 KB
ID:	1691245
    One example of how the relation looks like
    Last edited by amera amery; 28 Nov 2022, 11:43.

    Comment

    Working...
    X