Hi guys!
I have a dataset from year 1700 to 1900 on british gdp and population. The variables are:
1) anno (year)
2) PIL_nom_GBUK, which is the nominal GDP of Great Britain from 1700 to 1800, and then it is the nominal GDP of UK (GB + Northern Ireland) from 1801
3) Pop_GB, the population of Great Britain
4) Pop_UK, the population of UK
Here there is a sample:
I would like to generate a new variable that represents per capita gdp of GB from 1700 to 1800 and per capita gdp of UK from 1801.
In other terms, I want a new variable which is equal to PIL_nom_GBUK / Pop_GB from 1700 to 1800, and PIL_nom_GBUK / Pop_UK.
Can someone help me?
I have a dataset from year 1700 to 1900 on british gdp and population. The variables are:
1) anno (year)
2) PIL_nom_GBUK, which is the nominal GDP of Great Britain from 1700 to 1800, and then it is the nominal GDP of UK (GB + Northern Ireland) from 1801
3) Pop_GB, the population of Great Britain
4) Pop_UK, the population of UK
Here there is a sample:
Code:
* Example generated by -dataex-. For more info, type help dataex clear input int anno double(PIL_nom_GBUK Pop_GB Pop_UK) 1700 79.36639342216591 6.205051294339165 6.575830854946653 1701 82.29255065539935 6.243315983045056 6.613147071943983 1702 80.02515499754767 6.287647280902274 6.656532324328272 1703 74.21149638516411 6.341897161069989 6.709838579052267 1704 89.95262413015233 6.3727119315090235 6.7397121378862375 1705 83.77125936954829 6.3874823453321286 6.753543747768224 1706 68.91059342522354 6.408450380075861 6.773575380075862 1707 76.2850050639657 6.431911676255449 6.804473899561297 1708 83.89986573556004 6.454156264800768 6.834307200054715 1709 79.3191978029728 6.46899236922152 6.856886590734722 1710 74.37130198898305 6.48755856217637 6.88335379278082 1711 75.26647315998585 6.480122438085237 6.8839796132659155 1712 73.41236686798504 6.4677257513639725 6.879809084697307 1713 72.15256060662823 6.478882275834852 6.894065365544102 1714 80.3223420201773 6.502455019493225 6.920761182438872 1715 74.85401956430758 6.5099169287339596 6.9313696571696175 1716 77.9944601076646 6.549664320037117 6.974287282928869 1717 83.51729873278094 6.59441305443385 7.022230098789508 1718 87.8013220369702 6.639199523461984 7.070234675670342 1719 84.62148985633199 6.684023837556813 7.118301304736986 1720 93.14592301532916 6.661746445637375 7.099290616998276 1721 85.73055569187113 6.6543807338731265 7.0952161820831785 1722 84.84705947224151 6.660699764024171 7.104851246591317 1723 84.69700394160797 6.685698617223378 7.1331910778854715 1724 83.83908571450534 6.709474953096012 7.160333523221674 1725 87.69293439669414 6.734518875177854 7.1887688751778525 1726 86.91165874062534 6.791987814756587 7.245550175993482 1727 85.17542327773116 6.8320509414618025 7.284926704875754 1728 92.79616464227023 6.766135656315756 7.21832586127116 1729 85.76078856880203 6.657749947140612 7.10925563142849 1730 82.102595262551 6.57674249931289 7.027564699153263 1731 80.03975011496811 6.5718443781073725 7.021984128151647 1732 82.4085062686965 6.6006735094638564 7.050131842797189 1733 84.93930459797306 6.635777065019221 7.080587597209955 1734 84.92198523243191 6.704666308339079 7.1448771018078165 1735 84.50883477366416 6.764858848182817 7.200517468341752 1736 90.16768687829689 6.818846741600026 7.250000261992445 1737 84.11351561601026 6.860364350168041 7.287059357554696 1738 84.4301343444955 6.891901153865994 7.314183753258864 1739 84.40543014415867 6.935993177801534 7.35390899744554 1740 89.64518311978443 6.973858085527374 7.387452281830577 1741 93.42227234782419 6.990444455683417 7.399761718096232 1742 93.34414010457972 6.918001532023721 7.3230860878676785 1743 90.06296168469508 6.915765560855875 7.316661180102443 1744 88.14831503025016 6.963738415922356 7.360488415922356 1745 87.17395323198978 7.035611465545335 7.434071658268542 1746 92.38150169010427 7.0786536140777425 7.478831371317858 1747 95.15283472049227 7.110423788196756 7.512326513523631 1748 95.95374996241853 7.127136702539388 7.530771831435996 1749 96.38940285439226 7.17279436232214 7.57816936232214 1750 97.41809719137692 7.221009194177958 7.638744771655171 1751 95.78900648019506 7.2654906563793675 7.695963706494006 1752 103.17309766099176 7.310738010081235 7.754336920171932 1753 102.28791792928527 7.36348791645838 7.820612916458381 1754 98.61896979085097 7.414931318126537 7.879538442514208 1755 99.79259099718638 7.465070379797069 7.937282094386689 1756 102.8036419343457 7.5239509078558795 8.003891682956027 1757 116.09836492814382 7.555170073713647 8.04296641693633 1758 116.77394796206488 7.5738209246855215 8.06960141429233 1759 110.72662589906685 7.599979095918081 8.103874414712132 1760 114.57490387600458 7.644908652560328 8.157051622332958 1761 116.6280767319507 7.697310720676118 8.217836337217378 1762 115.64485661726508 7.725884826957718 8.254930295639927 1763 121.50442269664609 7.708151342226782 8.245856114170492 1764 122.65638039959005 7.7454539145692385 8.291959723401165 1765 122.9525172545312 7.805217422149737 8.360668321362336 1766 125.88834004754648 7.839945660361114 8.404488061283647 1767 130.71096909091156 7.858415592980735 8.432198303371832 1768 127.54460908078637 7.87812025076021 8.461294514032117 1769 129.64574032171123 7.928987911004733 8.521707446089577 1770 127.01665213014971 7.9835491640198075 8.585970205888371 1771 135.23614377119685 8.033077737594171 8.645359078437872 1772 136.0058086351932 8.09252372187677 8.714826752963715 1773 138.51086929136744 8.15440481692786 8.786893571143965 1774 137.85297101383622 8.21249777080606 8.855338965892491 1775 143.18445104015245 8.297891327731257 8.951254410229568 1776 145.01220067028925 8.375749157623915 9.039806347540468 1777 153.22618758516214 8.456019325605928 9.130945661807376 1778 152.40924772766363 8.543664190187622 9.229637576539412 1779 147.4180573230345 8.622542082880464 9.31974333514052 1780 153.51658384632782 8.667861977530935 9.376474871010895 1781 177.1660592016561 8.762727170226604 9.48293848823317 1782 176.17498984816606 8.829017771336586 9.561017354405738 1783 171.8349441815293 8.845714094320543 9.589694890257611 1784 165.85922184328768 8.929211515467232 9.685369630206027 1785 165.23643976513299 9.012614625508798 9.781149374803178 1786 177.71771923972136 9.108280809323965 9.889394771285492 1787 173.77072487012975 9.2149523959016 10.008851464397099 1788 167.71402207462967 9.309160325849406 10.116053764772554 1789 168.90436541979776 9.432863078093044 10.252963576524241 1790 186.30662514560473 9.54039941755421 10.373923145823316 1791 188.00630985425622 9.660132298143195 10.507298964809863 1792 207.0034945832193 9.771111046042206 10.632241134948758 1793 201.5472241252912 9.873352281442246 10.748675944657128 1794 196.96278952105942 9.960724683079192 10.85047586615168 1795 240.11070743198758 10.073806800565047 10.978223305051278 1796 251.4925319428565 10.174481845746017 11.093805392765633 1797 252.10535329436289 10.308183435586795 11.242659730427112 1798 265.79027267760404 10.427015608092965 11.376894405878023 1799 294.1826755823731 10.549393198921283 11.514928371363265 1800 335.81510194897817 10.614056386571129 11.595505989822005 1801 369.36233795405013 10.686 11.683626343621555 1802 319.8058313698263 10.774 11.788069717070647 1803 315.4398529976345 10.898 11.928784118377125 1804 335.58582314537097 11.049 12.096774014756903 1805 366.6219227812475 11.215 12.280043947056763 1806 371.5414304954829 11.378 12.460598530967985 1807 397.3742546313211 11.536 12.636442458259962 1808 387.97623335844423 11.686 12.804580498034168 1809 424.2574515911648 11.839 12.97601749799878 1810 467.5665129325724 11.989 13.144758385764307 1811 447.2090197381457 12.146 13.320808170160591 1812 454.8631919634387 12.331 13.525171942575486 1813 489.3989795301258 12.528 13.741854878315648 end
I would like to generate a new variable that represents per capita gdp of GB from 1700 to 1800 and per capita gdp of UK from 1801.
In other terms, I want a new variable which is equal to PIL_nom_GBUK / Pop_GB from 1700 to 1800, and PIL_nom_GBUK / Pop_UK.
Can someone help me?
Comment