Hi I am working on a survey data having nine variables.
I have to construct these two variables.
1: avg. of nonmissing. We average over the non-missing individual measures. We then convert this average into a standard normal variable.
2: avg., no missing. We average over the individual measures. We keep only individuals who gave valid answers to all nine survey questions, and so have no missing values. We then convert this average into a standard normal variable.
I am confused what the difference between nonmissing and no missing is.
I have to construct these two variables.
1: avg. of nonmissing. We average over the non-missing individual measures. We then convert this average into a standard normal variable.
2: avg., no missing. We average over the individual measures. We keep only individuals who gave valid answers to all nine survey questions, and so have no missing values. We then convert this average into a standard normal variable.
I am confused what the difference between nonmissing and no missing is.
Code:
* Example generated by -dataex-. For more info, type help dataex clear input long id double(var_30 var1_30 var_feel12 var_inter12 var_ener12 var_feel2w var_most var_app var_slow) 24100002 1 1 5 5 5 5 5 5 5 24100003 1 1 5 5 5 5 5 5 5 24100005 2 2 5 1 5 5 5 5 5 24100007 3 3 5 5 5 5 5 5 5 24100008 1 1 5 5 1 1 1 1 5 24100009 1 2 5 5 5 5 5 5 5 24100012 1 2 5 5 5 . . . . 24100014 . . . . . . . . . 24100015 3 3 5 5 5 5 5 5 5 24100018 . . . . . . . . . 24100020 1 1 5 5 5 . . . . 24100021 3 3 1 1 1 5 1 1 1 24100022 2 2 5 5 5 5 5 5 5 24100023 3 2 5 5 5 . . . . 24100024 3 3 5 5 5 5 5 5 5 24100026 1 1 5 5 5 5 5 5 1 24100027 4 3 1 1 5 5 5 5 5 24100028 2 3 5 5 5 5 5 5 5 24100029 1 2 5 5 5 5 5 5 5 24100030 1 1 5 5 5 5 5 5 5 24100031 3 4 5 5 5 5 5 5 5 24100032 1 2 5 5 5 . . . . 24100033 1 2 5 5 5 5 5 5 5 24100036 1 1 5 5 5 5 5 5 5 24100037 4 3 5 5 5 5 5 5 5 24100038 1 1 5 5 5 5 5 5 5 24100039 . . . . . . . . . 24100040 . . . . . . . . . 24100042 3 1 1 1 5 5 1 1 5 24100045 1 1 5 5 5 5 5 5 5 24100046 1 1 5 5 5 5 5 1 5 24100047 1 1 1 1 5 5 5 5 5 24100049 2 4 1 5 5 5 5 1 5 24100052 1 1 5 5 5 5 5 5 5 24100053 . . . . . . . . . 24100054 . . . . . . . . . 24100056 . . . . . . . . . 24100058 2 2 1 5 5 5 5 1 5 24100059 3 4 5 5 1 1 1 5 5 24100060 . . . . . . . . . 24100063 3 3 1 5 5 . . . . 24100065 4 4 1 1 5 5 1 5 5 24100067 4 4 1 1 1 1 1 1 5 24100070 3 3 1 1 5 5 5 1 5 24100072 1 1 5 5 5 5 5 5 5 24100081 . . . . . . . . . 24100083 3 2 1 1 1 1 1 1 1 24100084 1 1 5 5 5 5 5 5 5 24100085 1 3 5 5 5 . . . . 24100087 2 2 5 5 5 5 5 5 5 24100089 1 1 5 5 5 5 5 5 5 24100092 1 1 5 5 5 5 5 5 5 24100093 1 1 5 5 5 5 5 5 5 24100097 1 1 5 5 5 5 5 5 5 24100099 3 4 1 1 1 5 5 1 1 24100100 2 2 5 5 5 5 5 5 5 24100103 1 1 5 5 5 . . . . 24100105 1 3 1 5 1 5 1 1 1 24100109 1 1 5 5 5 . . . . 24100110 1 1 5 5 5 . . . . 24100113 1 1 5 5 5 . . . . 24100116 1 1 5 5 5 . . . . 24100117 1 1 5 5 5 . . . . 24100118 1 1 5 5 5 . . . . 24100119 . . . . . . . . . 24100120 3 2 5 5 5 . . . . 24100121 5 5 1 1 1 1 1 1 1 24100122 1 1 5 5 5 5 5 5 5 24100123 . . . . . . . . . 24100125 . . . . . . . . . 24100129 4 4 1 1 1 1 5 1 1 24100130 1 1 5 5 5 5 5 5 5 24100132 1 1 5 5 5 5 5 5 5 24100134 1 1 5 5 5 5 5 5 5 24100135 3 2 1 1 5 5 5 5 1 24100136 1 4 5 5 5 5 5 5 1 24100137 . . . . . . . . . 24100138 4 4 . . . . . . . 24100139 3 4 1 1 1 1 1 1 1 24100140 1 1 5 5 5 5 5 5 5 24100141 1 1 5 5 5 . . . . 24100142 4 3 5 1 1 5 1 5 5 24100143 1 1 5 5 5 . . . . 24100144 4 3 1 5 1 5 5 5 5 24100147 1 1 5 5 5 . . . . 24100148 . . . . . . . . . 24100151 5 5 1 1 1 1 1 1 1 24100153 3 3 5 5 5 . . . . 24100154 1 1 5 5 5 . . . . 24100157 1 1 5 5 5 . . . . 24100158 3 3 1 1 1 1 1 1 1 24100159 1 1 5 5 5 . . . . 24100162 1 1 5 5 5 . . . . 24100164 4 3 1 1 1 1 1 1 5 24100165 4 3 1 1 1 5 1 1 1 24100166 2 2 5 5 5 . . . . 24100167 5 3 1 1 5 5 5 1 1 24100168 1 1 5 5 5 . . . . 24100170 4 4 1 1 5 5 5 1 5 24100171 2 2 5 5 5 . . . . end
Comment