Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • diff-in-diff with multiple treatment periods but questions asked in different waves

    Hi all,

    I am working on a project to understand the effect of the Covid-19 pandemic on health behaviours using Understanding Society with a diff-in-diff set up comparing male and female outcomes. Health behaviours (hindex_cutoff) is an index based on six variables (dfruit_simp dvege_simp fvamt_cutoff alchfreq alchbinge metminutesmv_cutoff) where three are asked in Jul 2020 & Jan 2021 and the rest in Sep 2020 & Jan 2021 i.e, there are two treatment periods depending on the variable. I have two questions:

    1) I tried to create a variable where 1 = Pre, 2 = July/Sep 2020 and 3 = Jan 2021 but when running the estimations using this index, 2 is omitted. Is there a way around this?

    2) Alternatively, I could run the regressions separately for the six variables for each time period but the sample size is changing quite a bit (I have tried experimenting with saving the estimation samples from the smallest available sample per outcome variable and using that but this doesn't seem to work). How can I ensure that the sample size is constant across the outcome variables and time periods?


    **Treatment periods

    gen July2020 = .
    replace July2020 = 1 if wave == 15
    replace July2020 = 0 if wave == 9

    gen Sep2020 = .
    replace Sep2020 = 1 if wave == 16
    replace Sep2020 = 0 if wave == 9

    gen Jan2021 = .
    replace Jan2021 = 1 if wave == 18
    replace Jan2021 = 0 if wave == 9


    **Treatment vs. "control" groups

    gen treatfem = .
    replace treatfem = 1 if sex_main == 0
    replace treatfem = 0 if sex_main == 1


    keep if inlist(wave,9,15,16,17,18,19)
    bys pidp: keep if _N == 6


    xtreg hindex_cutoff i.treatfem##i.covidindicator i.dimonth_final2 i.dimonth_final3 i.dimonth_final4 i.dimonth_final5 i.dimonth_final6 i.dimonth_final7 i.dimonth_final8 i.dimonth_final9 i.dimonth_final10 ///
    i.dimonth_final11 i.dimonth_final12 i.gor_main, fe vce(cluster pidp)

    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input float(hindex_cutoff dfruit_simp dvege_simp alchfreq metminutesmv_cutoff alchbinge treatfem covidindicator imonth_final gor_main) long pidp byte wave float(July2020 Sep2020 Jan2021)
    . . . . . . 1 . 11  5    76165 17 . . .
    . . . . . . 1 .  3  5    76165 19 . . .
    . . . 1 . 1 1 2  9  5    76165 16 . 1 .
    . 1 0 . . . 1 2  7  5    76165 15 1 . .
    1 1 1 1 1 1 1 1  4  5    76165  9 0 0 0
    1 1 0 1 1 1 1 3  1  5    76165 18 . . 1
    . . . 0 1 1 1 2  9  1  1587125 16 . 1 .
    . . . . . . 1 . 11  1  1587125 17 . . .
    1 1 1 1 1 1 1 3  1  1  1587125 18 . . 1
    . 0 0 . . . 1 2  7  1  1587125 15 1 . .
    1 1 1 1 0 1 1 1  9  1  1587125  9 0 0 0
    . . . . . . 1 .  3  1  1587125 19 . . .
    . . . . . . 0 .  3 11  4849085 19 . . .
    . 1 1 . . . 0 2  7 11  4849085 15 1 . .
    . 1 1 0 . 1 0 3  1 11  4849085 18 . . 1
    . . . 0 . 0 0 2  9 11  4849085 16 . 1 .
    . . . . . . 0 . 11 11  4849085 17 . . .
    0 0 0 0 0 1 0 1  4 11  4849085  9 0 0 0
    1 0 0 1 1 1 1 3  1  7 68002725 18 . . 1
    . . . . . . 1 .  3  7 68002725 19 . . .
    0 0 1 1 0 1 1 1  3  7 68002725  9 0 0 0
    . . . 0 1 1 1 2  9  7 68002725 16 . 1 .
    . 0 0 . . . 1 2  7  7 68002725 15 1 . .
    . . . . . . 1 . 11  7 68002725 17 . . .
    . 1 1 . . . 1 2  7  1 68008847 15 1 . .
    . . . . . . 1 .  3  1 68008847 19 . . .
    1 1 0 1 0 1 1 1  3  1 68008847  9 0 0 0
    . . . . . . 1 . 11  1 68008847 17 . . .
    . 0 0 1 . 1 1 3  1  1 68008847 18 . . 1
    . . . 1 0 1 1 2  9  1 68008847 16 . 1 .
    . . . . . . 1 . 11  1 68010887 17 . . .
    . . . 1 . 1 1 2  9  1 68010887 16 . 1 .
    . . . . . . 1 .  3  1 68010887 19 . . .
    1 1 1 1 1 1 1 1  3  1 68010887  9 0 0 0
    . 0 1 1 . 1 1 3  1  1 68010887 18 . . 1
    . 1 1 . . . 1 2  7  1 68010887 15 1 . .
    . . . . . . 1 . 11  5 68031967 17 . . .
    0 0 1 0 1 1 1 1  3  5 68031967  9 0 0 0
    . 0 0 . . . 1 2  7  5 68031967 15 1 . .
    . . . . . . 1 .  3  5 68031967 19 . . .
    . . . 0 1 1 1 2  9  5 68031967 16 . 1 .
    0 1 0 0 0 1 1 3  1  5 68031967 18 . . 1
    . . . 1 1 1 0 2  9  7 68035365 16 . 1 .
    1 0 0 1 1 1 0 3  1  7 68035365 18 . . 1
    . . . . . . 0 .  3  7 68035365 19 . . .
    . 1 0 . . . 0 2  7  7 68035365 15 1 . .
    1 1 1 1 0 1 0 1  2  7 68035365  9 0 0 0
    . . . . . . 0 . 11  7 68035365 17 . . .
    . . . . . . 0 .  3  1 68035367 19 . . .
    . 1 1 . . . 0 2  7  1 68035367 15 1 . .
    end
    Many thanks
    Karen

  • #2
    I'm not understanding the premise. What is your treatment here?

    Comment


    • #3
      The treatment period is July 2020, September 2020 and January 2021 (compared against Wave 9: 2017-2019) and we are comparing females against males (the control group in this case). It is a little unusual in this case as everyone was treated i.e., they were all affected by the pandemic but this male female comparison has been done before in published papers.

      Comment

      Working...
      X