Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • serial autocorrelation in panel data

    Hi STATA community

    I have a panel data for period 2012-2020, with #obs 1988 and #groups 223, I run the xtreg, fe and the results as shown below, after that I run xtserial and I have serial autocorrelation issue! How can I deal with this problem please?

    xtreg WROAI FEMproportion ln_FS1 LEV_PERCENT BS BIND CEO_DUA firmage i.year i.INDUSTRY*, fe

    note: 2020.year omitted because of collinearity
    note: 1.INDUSTRY1 omitted because of collinearity
    note: 1.INDUSTRY2 omitted because of collinearity
    note: 1.INDUSTRY3 omitted because of collinearity
    note: 1.INDUSTRY4 omitted because of collinearity
    note: 1.INDUSTRY5 omitted because of collinearity
    note: 1.INDUSTRY6 omitted because of collinearity
    note: 1.INDUSTRY7 omitted because of collinearity
    note: 1.INDUSTRY8 omitted because of collinearity
    note: 1.INDUSTRY9 omitted because of collinearity
    note: 1.INDUSTRY10 omitted because of collinearity

    Number of obs = 1,988
    Group variable: id Number of groups = 223

    R-sq: Obs per group:
    within = 0.1469 min = 6
    between = 0.0006 avg = 8.9
    overall = 0.0001 max = 9

    F(14,1751) = 21.54
    corr(u_i, Xb) = -0.9574 Prob > F = 0.0000




    WROAI Coef. Std. Err. t P>t [95% Conf. Interval]

    FEMproportion 2.219943 2.045081 1.09 0.278 -1.791114 6.231
    ln_FS1 .9539394 .5602033 1.70 0.089 -.1447984 2.052677
    LEV_PERCENT -.1649817 .0163612 -10.08 0.000 -.1970713 -.1328922
    BS .3332249 .1401214 2.38 0.018 .0584019 .6080478
    BIND -.8364824 2.397737 -0.35 0.727 -5.539211 3.866246
    CEO_DUA -10.46369 4.086443 -2.56 0.011 -18.47852 -2.448872
    firmage -.7101108 .0989218 -7.18 0.000 -.9041281 -.5160936

    year
    2013 -.0385384 .5529471 -0.07 0.944 -1.123044 1.045968
    2014 1.556931 .5258847 2.96 0.003 .5255028 2.588359
    2015 1.800889 .508461 3.54 0.000 .8036348 2.798144
    2016 1.858767 .5045516 3.68 0.000 .8691804 2.848354
    2017 3.16199 .5125383 6.17 0.000 2.156739 4.167242
    2018 3.066505 .5300157 5.79 0.000 2.026975 4.106035
    2019 2.695152 .5482957 4.92 0.000 1.619768 3.770535
    2020 0 (omitted)

    1.INDUSTRY1 0 (omitted)
    1.INDUSTRY2 0 (omitted)
    1.INDUSTRY3 0 (omitted)
    1.INDUSTRY4 0 (omitted)
    1.INDUSTRY5 0 (omitted)
    1.INDUSTRY6 0 (omitted)
    1.INDUSTRY7 0 (omitted)
    1.INDUSTRY8 0 (omitted)
    1.INDUSTRY9 0 (omitted)
    1.INDUSTRY10 0 (omitted)
    _cons 25.41833 7.117782 3.57 0.000 11.45809 39.37858

    sigma_u 25.773241
    sigma_e 6.0717567
    rho .94741855 (fraction of variance due to u_i)

    F test that all u_i=0: F(222, 1751) = 11.62 Prob > F = 0.0000


    xtserial WROAI FEMproportion ln_FS1 LEV_PERCENT BS BIND CEO_DUA firmage

    Wooldridge test for autocorrelation in panel data
    H0: no first order autocorrelation
    F( 1, 222) = 12.314
    Prob > F = 0.0005


    How can I deal with this problem? I tried robust and lagging 1, 2 and the same results. How many lagging can I generate to fix this issue?





  • #2
    Huda:
    1) if -i.industry- id a time-invariant variable and you go -fe-, no wonder that -i.industry- has been omitted due to perfect collinearity with the fixed effect;
    2) just invoke standard-robust standard errors (via -robust- or -vce(cluster panelid)- options) to deal with both heteroskedasticity and/or autocorrelation. No need to repeat -xtserial- after that.
    Kind regards,
    Carlo
    (Stata 19.0)

    Comment


    • #3
      Hi Carlo,

      Thanks for your reply. I have run it with robust/cluster and the same result. How can I make sure there is no auto correlation after doing that.

      My supervisor commented why the ind.variable has a significant correlation with all other variables? (no multicollinearity and VIF below 2). Can I use lagging to solve this issue and how ?



      | WROAI WTQI FEMpro~n ln_FS1 LEV_PE~T BS BIND
      -------------+---------------------------------------------------------------
      WROAI | 1.0000
      WTQI | 0.4647* 1.0000
      FEMproport~n | 0.0370 0.0442* 1.0000
      ln_FS1 | -0.1518* -0.3822* 0.3252* 1.0000
      LEV_PERCENT | -0.1806* -0.1425* 0.0812* 0.2941* 1.0000
      BS | -0.0127 -0.0778* 0.2050* 0.6362* 0.1780* 1.0000
      BIND | -0.0896* -0.1216* 0.2651* 0.3787* 0.1921* 0.1858* 1.0000
      CEO_DUA | -0.0222 0.0177 -0.0224 0.0144 0.0048 0.0316 0.0473*
      firmage | 0.0044 -0.1093* 0.1196* 0.1680* 0.0038 0.1105* 0.0578*

      | CEO_DUA firmage
      -------------+------------------
      CEO_DUA | 1.0000
      firmage | -0.0444* 1.0000

      Comment


      • #4
        Huda:
        1) with such a large sample, a significant correlation is expected;
        2) after going cluster-robust standard error, there's no gain in reopeating -xtserial-, as the results will be the same (as the non-default standarda error has no bearing on residuals distribution);
        3) that said, I'd more concerned with the low within R-sq. In this respect, an investigation of the functional form of the regressand is recommended.
        Kind regards,
        Carlo
        (Stata 19.0)

        Comment

        Working...
        X