I have the dataset below (first dataex) and I want to add another dataset (second dataex). The common variables are "country" and "year". The first dataset has the variable "sex" that includes three case (female, male amd total). I want to add the second dataset in a way that the values of the variable "gdp_pc" mach the "total" of the variable sex in the first dataset. Can you help me with this? Below I send an example of the main dataset (first example) and a second example with the file I want to add (second example).
Thank you very much in advance.
First dataset:
Second dataset:
Thank you very much in advance.
First dataset:
Code:
* Example generated by -dataex-. For more info, type help dataex clear input str6 sex int year float(fam1 fam10a) str4 cou float fam9c "TOTAL" 1990 3 . "ARG" . "TOTAL" 1991 2.97 . "ARG" . "TOTAL" 1992 2.93 . "ARG" . "TOTAL" 1993 2.88 . "ARG" . "TOTAL" 1994 2.83 . "ARG" . "TOTAL" 1995 2.77 . "ARG" . "TOTAL" 1996 2.72 . "ARG" . "TOTAL" 1997 2.67 . "ARG" . "TOTAL" 1998 2.62 . "ARG" . "TOTAL" 1999 2.58 . "ARG" . "TOTAL" 2000 2.54 . "ARG" . "TOTAL" 2001 2.51 . "ARG" . "TOTAL" 2002 2.49 . "ARG" . "TOTAL" 2003 2.46 . "ARG" . "TOTAL" 2004 2.44 . "ARG" . "TOTAL" 2005 2.42 . "ARG" . "TOTAL" 2006 2.4 . "ARG" . "TOTAL" 2007 2.38 . "ARG" . "TOTAL" 2008 2.37 . "ARG" . "TOTAL" 2009 2.36 . "ARG" . "TOTAL" 2010 2.35 . "ARG" . "TOTAL" 2011 2.34 . "ARG" . "TOTAL" 2012 2.33 . "ARG" . "TOTAL" 2013 2.32 . "ARG" . "TOTAL" 2014 2.31 . "ARG" . "TOTAL" 2015 2.3 . "ARG" . "TOTAL" 2016 2.29 . "ARG" . "TOTAL" 2017 2.28 . "ARG" . "FEMALE" 2018 . . "ARG" . "MALE" 2018 . . "ARG" . "TOTAL" 2018 2.26 . "ARG" . "TOTAL" 2019 2.25 . "ARG" . "TOTAL" 2020 2.23 . "ARG" . "TOTAL" 1990 1.9 . "AUS" . "TOTAL" 1991 1.85 . "AUS" . "TOTAL" 1992 1.89 . "AUS" . "TOTAL" 1993 1.86 . "AUS" . "TOTAL" 1994 1.84 . "AUS" . "TOTAL" 1995 1.82 . "AUS" . "TOTAL" 1996 1.8 . "AUS" . "TOTAL" 1997 1.78 . "AUS" . "TOTAL" 1998 1.76 . "AUS" . "TOTAL" 1999 1.76 . "AUS" . "FEMALE" 2000 . . "AUS" . "MALE" 2000 . . "AUS" . "TOTAL" 2000 1.76 . "AUS" . "FEMALE" 2001 . . "AUS" . "MALE" 2001 . . "AUS" . "TOTAL" 2001 1.73 . "AUS" . "FEMALE" 2002 . . "AUS" . "MALE" 2002 . . "AUS" . "TOTAL" 2002 1.77 . "AUS" . "FEMALE" 2003 . . "AUS" . "MALE" 2003 . . "AUS" . "TOTAL" 2003 1.77 . "AUS" . "FEMALE" 2004 . . "AUS" . "MALE" 2004 . . "AUS" . "TOTAL" 2004 1.78 19.6 "AUS" 16.6 "FEMALE" 2005 . . "AUS" . "MALE" 2005 . . "AUS" . "TOTAL" 2005 1.85 19.8 "AUS" 14.8 "FEMALE" 2006 . . "AUS" . "MALE" 2006 . . "AUS" . "TOTAL" 2006 1.88 19.4 "AUS" 14.3 "FEMALE" 2007 . . "AUS" . "MALE" 2007 . . "AUS" . "TOTAL" 2007 1.99 22.5 "AUS" 13.5 "FEMALE" 2008 . . "AUS" . "MALE" 2008 . . "AUS" . "TOTAL" 2008 2.02 27.1 "AUS" 12.5 "FEMALE" 2009 . . "AUS" . "MALE" 2009 . . "AUS" . "TOTAL" 2009 1.97 22.1 "AUS" 15.1 "FEMALE" 2010 . . "AUS" . "MALE" 2010 . . "AUS" . "TOTAL" 2010 1.95 23.3 "AUS" 13.9 "FEMALE" 2011 . . "AUS" . "MALE" 2011 . . "AUS" . "TOTAL" 2011 1.92 25.2 "AUS" 14 "FEMALE" 2012 . . "AUS" . "MALE" 2012 . . "AUS" . "TOTAL" 2012 1.93 . "AUS" . "FEMALE" 2013 . . "AUS" . "MALE" 2013 . . "AUS" . "TOTAL" 2013 1.88 . "AUS" . "FEMALE" 2014 . . "AUS" . "MALE" 2014 . . "AUS" . "TOTAL" 2014 1.79 . "AUS" . "FEMALE" 2015 . . "AUS" . "MALE" 2015 . . "AUS" . "TOTAL" 2015 1.79 . "AUS" . "FEMALE" 2016 . . "AUS" . "MALE" 2016 . . "AUS" . "TOTAL" 2016 1.79 . "AUS" . "FEMALE" 2017 . . "AUS" . "MALE" 2017 . . "AUS" . "TOTAL" 2017 1.74 . "AUS" . "FEMALE" 2018 . . "AUS" . "MALE" 2018 . . "AUS" . "TOTAL" 2018 1.74 . "AUS" . end
Second dataset:
Code:
* Example generated by -dataex-. For more info, type help dataex clear input str49 country int year float gdp_pc "Australia" 2015 47226.76 "Australia" 2016 47555.96 "Australia" 2017 48109.64 "Australia" 2018 48405.05 "Australia" 2019 47649.92 "Australia" 2020 48094.34 "Australia" 2021 49747.45 "Austria" 2015 49942.05 "Austria" 2016 50292.87 "Austria" 2017 51105.6 "Austria" 2018 52092.59 "Austria" 2019 52645.18 "Austria" 2020 49030.93 "Austria" 2021 51066.61 "Belgium" 2015 46201.69 "Belgium" 2016 46551.56 "Belgium" 2017 47122.51 "Belgium" 2018 47749.11 "Belgium" 2019 48555.65 "Belgium" 2020 45733.46 "Belgium" 2021 48346.04 "Canada" 2015 44670.05 "Canada" 2016 44609.38 "Canada" 2017 45417.38 "Canada" 2018 45868.34 "Canada" 2019 46055.95 "Canada" 2020 43299.66 "Canada" 2021 45018.61 "Czech Republic" 2015 33909.31 "Czech Republic" 2016 34696.16 "Czech Republic" 2017 36405.973 "Czech Republic" 2018 37447.773 "Czech Republic" 2019 38427.285 "Czech Republic" 2020 36208.01 "Czech Republic" 2021 37501.26 "Denmark" 2015 49058.14 "Denmark" 2016 50235.02 "Denmark" 2017 51329.97 "Denmark" 2018 52089.17 "Denmark" 2019 52658.08 "Denmark" 2020 51492.68 "Denmark" 2021 53771.66 "Finland" 2015 42490.21 "Finland" 2016 43567.15 "Finland" 2017 44852.7 "Finland" 2018 45298.11 "Finland" 2019 45808.05 "Finland" 2020 44724.21 "Finland" 2021 45964.21 "France" 2015 40829.89 "France" 2016 41122.76 "France" 2017 41886.43 "France" 2018 42456.99 "France" 2019 43039.73 "France" 2020 39548.03 "France" 2021 42111.95 "Germany" 2015 47609.56 "Germany" 2016 48279.98 "Germany" 2017 49389.27 "Germany" 2018 49724.11 "Germany" 2019 50136.41 "Germany" 2020 48243.49 "Germany" 2021 49490.01 "Greece" 2015 26760.15 "Greece" 2016 26740.924 "Greece" 2017 27086.48 "Greece" 2018 27594.35 "Greece" 2019 28144.07 "Greece" 2020 25664.93 "Greece" 2021 27881.627 "Hungary" 2015 26798.854 "Hungary" 2016 27469.645 "Hungary" 2017 28719.39 "Hungary" 2018 30297.81 "Hungary" 2019 31783.996 "Hungary" 2020 30404.014 "Hungary" 2021 32702.99 "Japan" 2015 40908.78 "Japan" 2016 41274.64 "Japan" 2017 42041.31 "Japan" 2018 42374.82 "Japan" 2019 42365.48 "Japan" 2020 40603.66 "Japan" 2021 41344.38 "Poland" 2015 26495.814 "Poland" 2016 27298.25 "Poland" 2017 28705.12 "Poland" 2018 30418.82 "Poland" 2019 31794.82 "Poland" 2020 31178.52 "Poland" 2021 33481.156 "Spain" 2015 34945.48 "Spain" 2016 35976.254 "Spain" 2017 36980.742 "Spain" 2018 37666.945 "Spain" 2019 38107.176 "Spain" 2020 33612.746 "Spain" 2021 35486.12 "Switzerland" 2015 66020.21 "Switzerland" 2016 66638.74 end
Comment