Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Log Approximation vs Non-log Approximation for Growth Rate

    Consider
    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input byte id float(realimp date)
    95 18964064 601
    95 30740372 602
    95 25612648 603
    95 26472708 604
    95 25346012 605
    95 28262746 606
    95 28106592 607
    95 35148668 608
    95 37034976 609
    95 44869052 610
    95 43277232 611
    95 35302556 612
    95 35085260 613
    95 47408776 614
    95 49202448 615
    95 50826672 616
    95 55693260 617
    95 62518168 618
    95 45607104 619
    95 53402392 620
    95 70177944 621
    95 62096920 622
    95 62962320 623
    95 37881372 624
    95 50635756 625
    95 60353728 626
    95 56573680 627
    95 63089248 628
    95 51206944 629
    95 47492632 630
    95 44790464 631
    95 52307252 632
    95 57115056 633
    95 55720240 634
    95 44746176 635
    95 30616640 636
    95 26146470 637
    95 29813360 638
    95 31709702 639
    95 34182000 640
    95 33632032 641
    95 34539272 642
    95 30752732 643
    95 26288488 644
    95 37717016 645
    95 32585044 646
    95 42561160 647
    95 24585404 648
    95 31266244 649
    95 25195776 650
    95 27995372 651
    95 30721398 652
    95 24833276 653
    95 43940136 654
    95 27225712 655
    95 27228472 656
    95 31973072 657
    95 27563726 658
    95 32078164 659
    95 27973972 660
    95 24295846 661
    95 31201076 662
    95 41364280 663
    95 31293954 664
    95 28342988 665
    95 31942990 666
    95 21788070 667
    95 22794068 668
    95 38079800 669
    95 39365484 670
    95 28274652 671
    95 22592800 672
    95 23978800 673
    95 29974936 674
    95 31355418 675
    95 23285228 676
    95 23698020 677
    95 24267414 678
    95 25777648 679
    95 28563280 680
    95 34576768 681
    95 25015870 682
    95 29617780 683
    95 21395792 684
    end
    format %tm date
    label values id id
    label def id 95 "Luxury Watches", modify
    
    
    cls
    
    tsset date, m
    
    g logimp = ln(realimp)
    
    g grow2 = D.logimp
    
    g grow = D.realimp / L.realimp
    
    br
    Here, we have real-imports of Luxury Watches, put together from Python which I've discussed here before. Precisely, we have interpolated versions of real import data, which the original authors don't mention. Anyways, I wanted to make a growth rate outcome variable. So, I followed the formulae from Carlo Lazzaro and Sebastian Kripfganz and Clyde Schechter who respectively give two formulae to calculate this here and here.

    i get different results when I use these though. Not incremental differences of a few thousandths, but by the hundredths, which in the aggregate can be pretty meaningful. I guess my question is, why do these two give different results? One is a log approximation, whereas the other one is more precise (presumably)? Why is this, and are there any advantages from one formula to the next?

  • #2
    \(ln(x+ \Delta x) - ln(x)\) is approximately equal to \(\frac{\Delta x}{x}\) for small \(\frac{\Delta x}{x}\). Consider 3 cases:

    1. \(\Delta x= 10\), \(x= 100\)
    2. \(\Delta x= 1\), \(x= 100\)
    3. \(\Delta x= 0.1\), \(x= 100\)

    then

    1. \(ln(x+ \Delta x) - ln(x) = ln(110) - ln(100)\)

    Res.:

    Code:
    . di 10/100
    .1
    
    . di ln(110)-ln(100)
    .09531018
    2. \(ln(x+ \Delta x) - ln(x) = ln(101) - ln(100)\)

    Res.:

    Code:
    . di 1/100
    .01
    
    . di ln(101)-ln(100)
    .00995033
    3. \(ln(x+ \Delta x) - ln(x) = ln(100.1) - ln(100)\)

    Res.:

    Code:
    . di .1/100
    .001
    
    . di ln(100.1)-ln(100)
    .0009995
    So you see the approximation gets better the smaller the relative change is. Lagging and taking differences in time-series data is easy, so that's one advantage for you.
    Last edited by Andrew Musau; 02 Nov 2022, 11:28.

    Comment

    Working...
    X