Consider
Here, we have real-imports of Luxury Watches, put together from Python which I've discussed here before. Precisely, we have interpolated versions of real import data, which the original authors don't mention. Anyways, I wanted to make a growth rate outcome variable. So, I followed the formulae from Carlo Lazzaro and Sebastian Kripfganz and Clyde Schechter who respectively give two formulae to calculate this here and here.
i get different results when I use these though. Not incremental differences of a few thousandths, but by the hundredths, which in the aggregate can be pretty meaningful. I guess my question is, why do these two give different results? One is a log approximation, whereas the other one is more precise (presumably)? Why is this, and are there any advantages from one formula to the next?
Code:
* Example generated by -dataex-. For more info, type help dataex clear input byte id float(realimp date) 95 18964064 601 95 30740372 602 95 25612648 603 95 26472708 604 95 25346012 605 95 28262746 606 95 28106592 607 95 35148668 608 95 37034976 609 95 44869052 610 95 43277232 611 95 35302556 612 95 35085260 613 95 47408776 614 95 49202448 615 95 50826672 616 95 55693260 617 95 62518168 618 95 45607104 619 95 53402392 620 95 70177944 621 95 62096920 622 95 62962320 623 95 37881372 624 95 50635756 625 95 60353728 626 95 56573680 627 95 63089248 628 95 51206944 629 95 47492632 630 95 44790464 631 95 52307252 632 95 57115056 633 95 55720240 634 95 44746176 635 95 30616640 636 95 26146470 637 95 29813360 638 95 31709702 639 95 34182000 640 95 33632032 641 95 34539272 642 95 30752732 643 95 26288488 644 95 37717016 645 95 32585044 646 95 42561160 647 95 24585404 648 95 31266244 649 95 25195776 650 95 27995372 651 95 30721398 652 95 24833276 653 95 43940136 654 95 27225712 655 95 27228472 656 95 31973072 657 95 27563726 658 95 32078164 659 95 27973972 660 95 24295846 661 95 31201076 662 95 41364280 663 95 31293954 664 95 28342988 665 95 31942990 666 95 21788070 667 95 22794068 668 95 38079800 669 95 39365484 670 95 28274652 671 95 22592800 672 95 23978800 673 95 29974936 674 95 31355418 675 95 23285228 676 95 23698020 677 95 24267414 678 95 25777648 679 95 28563280 680 95 34576768 681 95 25015870 682 95 29617780 683 95 21395792 684 end format %tm date label values id id label def id 95 "Luxury Watches", modify cls tsset date, m g logimp = ln(realimp) g grow2 = D.logimp g grow = D.realimp / L.realimp br
i get different results when I use these though. Not incremental differences of a few thousandths, but by the hundredths, which in the aggregate can be pretty meaningful. I guess my question is, why do these two give different results? One is a log approximation, whereas the other one is more precise (presumably)? Why is this, and are there any advantages from one formula to the next?
Comment