I recently ran this code for a longitudinal mixed model. The variable (time) is 1, 2, 3. which represent the 3 measurement visits. What I want to know is what is the effect of change in x on Y. The results I get are below. I would like to know how to interpret these results and what I should report in my paper. I also worry I have done some mistake as if I do a standard linear regression, I get the exact same estimates. I hope someone can help.
xtmixed Y i.x_change education_level_bl bmi_BL smoke_status_BL || time:
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -946.13
Iteration 1: log likelihood = -946.05813
Iteration 2: log likelihood = -946.05732
Iteration 3: log likelihood = -946.05732
Computing standard errors:
Mixed-effects ML regression Number of obs = 825
Group variable: time Number of groups = 3
Obs per group:
min = 275
avg = 275.0
max = 275
Wald chi2(4) = 55.84
Log likelihood = -946.05732 Prob > chi2 = 0.0000
------------------------------------------------------------------------------------
Y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------------+----------------------------------------------------------------
x_change education | .29579 .0668334 4.43 0.000 .164799 .4267809
education_level_bl | -.0229858 .0164508 -1.40 0.162 -.0552288 .0092572
bmi_BL | .0378848 .0080575 4.70 0.000 .0220923 .0536773
smoke_status_BL | .0648095 .0320243 2.02 0.043 .002043 .127576
_cons | 1.948898 .2228993 8.74 0.000 1.512023 2.385772
------------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
time: Identity |
sd(_cons) | 6.65e-12 8.43e-11 1.09e-22 .4053042
-----------------------------+------------------------------------------------
sd(Residual) | .7617001 .0187524 .7258187 .7993553
------------------------------------------------------------------------------
LR test vs. linear model: chibar2(01) = 0.00 Prob >= chibar2 = 1.0000
xtmixed Y i.x_change education_level_bl bmi_BL smoke_status_BL || time:
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -946.13
Iteration 1: log likelihood = -946.05813
Iteration 2: log likelihood = -946.05732
Iteration 3: log likelihood = -946.05732
Computing standard errors:
Mixed-effects ML regression Number of obs = 825
Group variable: time Number of groups = 3
Obs per group:
min = 275
avg = 275.0
max = 275
Wald chi2(4) = 55.84
Log likelihood = -946.05732 Prob > chi2 = 0.0000
------------------------------------------------------------------------------------
Y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------------+----------------------------------------------------------------
x_change education | .29579 .0668334 4.43 0.000 .164799 .4267809
education_level_bl | -.0229858 .0164508 -1.40 0.162 -.0552288 .0092572
bmi_BL | .0378848 .0080575 4.70 0.000 .0220923 .0536773
smoke_status_BL | .0648095 .0320243 2.02 0.043 .002043 .127576
_cons | 1.948898 .2228993 8.74 0.000 1.512023 2.385772
------------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
time: Identity |
sd(_cons) | 6.65e-12 8.43e-11 1.09e-22 .4053042
-----------------------------+------------------------------------------------
sd(Residual) | .7617001 .0187524 .7258187 .7993553
------------------------------------------------------------------------------
LR test vs. linear model: chibar2(01) = 0.00 Prob >= chibar2 = 1.0000
Comment