Dear all, I have a wide shaped (thanks to Clyde Schechter again!) dataset in which I collected the time-to event data of the drop out of 5 drugs, in different hospitals and with covariates (adverse events, therapeutci success and so on.)
Simplifying my variables are:
Anyway, I'd like to investigate dropout, adverse events and therapeutc success simultaneously.
My idea is to run two joint models:
The command to use, as I can see, is "gsem"
I'm having a lot of troubles in specifying it. Does anybody know what the correct code is?
I declared time-to-event data:
stset followup, id(id) failure(intherapy == 0).
The I tried many times but it never worked.
Thanks in advance.
I hope this topic will be useful not only to me
Simplifying my variables are:
- 5 different drugs (variable: "drug")
- Adverse events (time dependent dichotomous variable: "AdEvents")
- Therapeutic success (time dependent dichotomous variable: "dicOutcome")
- drug dropout: "intherapy == 0" (absence of outcome)
- followup time: "followup"
- variable order of followup (first, second, third ... followup: variable "t")
- center (variable "hospital")
- to estimate dropout time in the 5 drugs, accounting for the different hospitals)
- to estimate longitudinalli adverse events (variable "AdEvents") and therapeutci succes (variable "dicOutcome")
Anyway, I'd like to investigate dropout, adverse events and therapeutc success simultaneously.
My idea is to run two joint models:
- dropout (time-to-event) and adverse event (longitudinal variable) and accounting for Sex, Age and therapeutc effect
- dropout (time-to-event) and therapeutc effect (longitudinal variable) and accounting for Sex, Age and adverse event
The command to use, as I can see, is "gsem"
I'm having a lot of troubles in specifying it. Does anybody know what the correct code is?
I declared time-to-event data:
stset followup, id(id) failure(intherapy == 0).
The I tried many times but it never worked.
Thanks in advance.
I hope this topic will be useful not only to me
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float(id t followup intherapy) int age byte(sex drug) float dicOutcome byte AdEvents str5 hospital 1 1 6 1 39 0 5 0 0 "IS_" 1 2 12 1 39 0 5 0 0 "IS_" 1 3 12.866667 1 39 0 5 0 0 "IS_" 1 4 36 1 39 0 5 0 0 "IS_" 2 1 6 1 28 1 1 0 0 "IS_" 2 2 12 1 28 1 1 1 0 "IS_" 2 3 20.766666 1 28 1 1 1 0 "IS_" 2 4 36 1 28 1 1 1 0 "IS_" 3 1 6 1 31 1 1 0 0 "IS_" 3 2 12 1 31 1 1 0 0 "IS_" 3 3 21.3 1 31 1 1 0 0 "IS_" 3 4 36 1 31 1 1 0 0 "IS_" 4 1 6 1 31 1 3 0 0 "IS_" 4 2 12 1 31 1 3 1 0 "IS_" 4 3 14.2 1 31 1 3 1 0 "IS_" 4 4 36 1 31 1 3 1 0 "IS_" 5 1 6 1 21 0 1 0 0 "IS_" 5 2 12 1 21 0 1 0 0 "IS_" 5 3 24 1 21 0 1 0 0 "IS_" 5 4 33.466667 1 21 0 1 0 0 "IS_" 6 1 6 1 28 1 1 0 0 "IS_" 6 2 12 1 28 1 1 0 0 "IS_" 6 3 20 0 28 1 1 0 0 "IS_" 7 1 6 1 27 1 1 0 0 "IS_" 7 2 12 1 27 1 1 1 0 "IS_" 7 3 24 1 27 1 1 1 0 "IS_" 7 4 33.466667 1 27 1 1 1 0 "IS_" 8 1 6 1 30 1 3 0 1 "IS_" 8 2 12 1 30 1 3 0 1 "IS_" 8 3 33.466667 1 30 1 3 0 1 "IS_" 8 4 36 1 30 1 3 0 1 "IS_" 9 1 6 1 31 0 1 0 0 "IS_" 9 2 12 1 31 0 1 1 0 "IS_" 9 3 24 1 31 0 1 1 0 "IS_" 9 4 33.466667 1 31 0 1 1 0 "IS_" 10 1 6 1 34 1 2 1 1 "IS_" 10 2 12 1 34 1 2 1 1 "IS_" 10 3 24 1 34 1 2 1 1 "IS_" 10 4 44.6 1 34 1 2 1 1 "IS_" 11 1 6 1 33 0 2 0 0 "IS_" 11 2 12 1 33 0 2 1 0 "IS_" 11 3 24 1 33 0 2 1 0 "IS_" 11 4 43.66667 1 33 0 2 1 0 "IS_" 12 1 6 1 50 0 2 1 0 "IS_" 12 2 12 1 50 0 2 1 0 "IS_" 12 3 24 1 50 0 2 1 0 "IS_" 12 4 45.63334 1 50 0 2 1 0 "IS_" 13 1 6 1 40 1 2 1 0 "IS_" 13 2 12 0 40 1 2 1 0 "IS_" 14 1 6 1 56 0 2 0 0 "IS_" 14 2 9.1 1 56 0 2 0 0 "IS_" 14 3 12 1 56 0 2 0 0 "IS_" 14 4 36 1 56 0 2 0 0 "IS_" 15 1 6 1 41 1 1 1 0 "IS_" 15 2 12 1 41 1 1 1 0 "IS_" 15 3 24 1 41 1 1 1 0 "IS_" 15 4 45.56667 1 41 1 1 1 0 "IS_" 16 1 6 1 22 1 1 0 0 "IS_" 16 2 12 1 22 1 1 1 1 "IS_" 16 3 24 1 22 1 1 0 1 "IS_" 16 4 44.6 1 22 1 1 0 1 "IS_" 17 1 6 1 58 1 1 1 1 "IS_" 17 2 12 1 58 1 1 1 0 "IS_" 17 3 24 1 58 1 1 1 0 "IS_" 17 4 45.63334 1 58 1 1 1 0 "IS_" 18 1 6 1 38 1 1 1 0 "IS_" 18 2 12 1 38 1 1 1 0 "IS_" 18 3 24 1 38 1 1 1 0 "IS_" 18 4 45.63334 1 38 1 1 1 0 "IS_" 19 1 6 1 22 0 3 1 0 "IS_" 19 2 12 1 22 0 3 1 0 "IS_" 19 3 24 1 22 0 3 1 0 "IS_" 19 4 33.466667 1 22 0 3 1 0 "IS_" 20 1 6 1 18 1 3 1 0 "IS_" 20 2 12 1 18 1 3 1 0 "IS_" 20 3 24 1 18 1 3 1 0 "IS_" 20 4 45.43333 1 18 1 3 1 0 "IS_" 21 1 6 1 20 1 3 1 0 "IS_" 21 2 12 1 20 1 3 1 0 "IS_" 21 3 24 1 20 1 3 1 0 "IS_" 21 4 33.266666 1 20 1 3 1 0 "IS_" 22 1 6 1 29 0 3 1 0 "IS_" 22 2 12 1 29 0 3 1 1 "IS_" 22 3 24 1 29 0 3 1 1 "IS_" 22 4 33.466667 1 29 0 3 1 1 "IS_" 23 1 6 1 59 1 3 1 0 "IS_" 23 2 12 1 59 1 3 1 0 "IS_" 23 3 24 1 59 1 3 1 0 "IS_" 23 4 45.63334 1 59 1 3 1 0 "IS_" 24 1 6 1 19 0 3 1 0 "IS_" 24 2 12 1 19 0 3 1 0 "IS_" 24 3 24 1 19 0 3 1 0 "IS_" 24 4 33.466667 1 19 0 3 1 0 "IS_" 25 1 6 1 43 1 3 0 0 "IS_" 25 2 12 1 43 1 3 0 0 "IS_" 25 3 13 0 43 1 3 0 0 "IS_" 26 1 6 1 40 0 3 0 1 "IS_" 26 2 12 1 40 0 3 0 1 "IS_" 26 3 13 0 40 0 3 0 1 "IS_" 27 1 6 1 28 1 3 0 0 "IS_" end