Hello Stata users,
I am studying the effect of innovation (both firm's and academic) on the productivity growth of non-superstar firms.
I use academic innovation (innovation_index) as an instrumental variable to explain firm's innovation (nb_cp) as well.
This is because I assume that academic innovation indirectly affect firm-level productivity growth via given firm's innovation (d_loglp).
However, I found that using just -xtreg- in my model is performing better than -xtivreg- or -ivreg2- in terms of my expectation of coefficient of firm's innovation (nb_cp).
For more information, I use Error Correction Model and Hybrid model.
Below is the outputs for all of my model (+ due to limited number of characters in post, I post more regression outputs in the below post #2):
Given the above results, I would like to hear advice on whether to use IV approach or not.
To the best of my knowledge, I was thinking that university's innovation does not directly affect firm-level productivity growth (which might be wrong).
Would it be possible to hear any advice regarding the output of these models and testing instrument variable before performing the regression in Stata, please?
Thank you in advance!
I am studying the effect of innovation (both firm's and academic) on the productivity growth of non-superstar firms.
I use academic innovation (innovation_index) as an instrumental variable to explain firm's innovation (nb_cp) as well.
This is because I assume that academic innovation indirectly affect firm-level productivity growth via given firm's innovation (d_loglp).
However, I found that using just -xtreg- in my model is performing better than -xtivreg- or -ivreg2- in terms of my expectation of coefficient of firm's innovation (nb_cp).
For more information, I use Error Correction Model and Hybrid model.
Below is the outputs for all of my model (+ due to limited number of characters in post, I post more regression outputs in the below post #2):
Code:
. xtivreg d_loglp fr_growth lag_gap log_intangible log_rd logemp firm_age /// > i.year i.naics2 (nb_cp=innov_index) if Frontier == 0, vce(cluster gvkey) G2SLS random-effects IV regression Number of obs = 18,045 Group variable: gvkey Number of groups = 2,172 R-squared: Obs per group: Within = 0.0282 min = 1 Between = 0.0323 avg = 8.3 Overall = 0.0146 max = 62 Wald chi2(91) = 719.89 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 (Std. err. adjusted for 3,430 clusters in gvkey) -------------------------------------------------------------------------------- | Robust d_loglp | Coefficient std. err. z P>|z| [95% conf. interval] ---------------+---------------------------------------------------------------- nb_cp | -.0183235 .0206332 -0.89 0.375 -.0587638 .0221169 fr_growth | .1106896 .0122647 9.03 0.000 .0866513 .134728 lag_gap | .2021425 .0176848 11.43 0.000 .1674809 .2368041 log_intangible | .0053826 .0045773 1.18 0.240 -.0035887 .0143538 log_rd | .0615087 .0081511 7.55 0.000 .0455329 .0774845 logemp | -.074794 .0113621 -6.58 0.000 -.0970634 -.0525246 firm_age | .0030151 .0009118 3.31 0.001 .001228 .0048022 | year | 1952 | .0075932 .0984207 0.08 0.939 -.1853079 .2004943 1953 | .1131369 .107592 1.05 0.293 -.0977396 .3240134 1954 | -.0311501 .1089366 -0.29 0.775 -.244662 .1823617 1955 | -.0198466 .1160307 -0.17 0.864 -.2472626 .2075695 1956 | -.0589943 .0929338 -0.63 0.526 -.2411413 .1231527 1957 | -.0263302 .0903444 -0.29 0.771 -.203402 .1507415 1958 | -.0600593 .1027183 -0.58 0.559 -.2613835 .141265 1959 | -.0807842 .1154156 -0.70 0.484 -.3069947 .1454263 1960 | -.1033547 .1059654 -0.98 0.329 -.311043 .1043336 1961 | -.0781265 .1049465 -0.74 0.457 -.2838178 .1275649 1962 | -.1313381 .120659 -1.09 0.276 -.3678253 .1051491 1963 | -.1334081 .1134379 -1.18 0.240 -.3557423 .0889261 1964 | -.108942 .1191606 -0.91 0.361 -.3424926 .1246085 1965 | -.1910552 .1201511 -1.59 0.112 -.426547 .0444366 1966 | -.1513376 .1133352 -1.34 0.182 -.3734705 .0707953 1967 | -.1872244 .1172957 -1.60 0.110 -.4171198 .042671 1968 | -.1495189 .1175422 -1.27 0.203 -.3798973 .0808596 1969 | -.1697759 .1174785 -1.45 0.148 -.4000294 .0604777 1970 | -.1471852 .1157171 -1.27 0.203 -.3739866 .0796161 1971 | -.1519141 .114787 -1.32 0.186 -.3768925 .0730644 1972 | -.144976 .1151366 -1.26 0.208 -.3706396 .0806877 1973 | -.2058058 .1159198 -1.78 0.076 -.4330044 .0213928 1974 | -.260185 .1168832 -2.23 0.026 -.4892718 -.0310982 1975 | -.2749146 .116734 -2.36 0.019 -.5037091 -.0461201 1976 | -.1730036 .1161963 -1.49 0.137 -.4007442 .054737 1977 | -.1793295 .1153565 -1.55 0.120 -.4054241 .046765 1978 | -.1695945 .1159301 -1.46 0.143 -.3968132 .0576243 1979 | -.1585263 .1156452 -1.37 0.170 -.3851867 .0681342 1980 | -.2663978 .1177009 -2.26 0.024 -.4970874 -.0357083 1981 | -.2762778 .1171371 -2.36 0.018 -.5058624 -.0466933 1982 | -.2233883 .1164002 -1.92 0.055 -.4515285 .0047519 1983 | -.2162437 .1167323 -1.85 0.064 -.4450348 .0125474 1984 | -.1621432 .116725 -1.39 0.165 -.39092 .0666336 1985 | -.1887889 .1173277 -1.61 0.108 -.4187471 .0411692 1986 | -.1893198 .1183286 -1.60 0.110 -.4212395 .0425999 1987 | -.1972566 .1184689 -1.67 0.096 -.4294515 .0349382 1988 | -.2416786 .1187279 -2.04 0.042 -.4743811 -.0089761 1989 | -.3407587 .1200202 -2.84 0.005 -.5759939 -.1055235 1990 | -.2886399 .1199518 -2.41 0.016 -.5237411 -.0535387 1991 | -.2737638 .1190288 -2.30 0.021 -.5070561 -.0404716 1992 | -.2736437 .1199716 -2.28 0.023 -.5087838 -.0385037 1993 | -.2743006 .1193553 -2.30 0.022 -.5082326 -.0403686 1994 | -.2769886 .1200254 -2.31 0.021 -.512234 -.0417432 1995 | -.3241784 .1217793 -2.66 0.008 -.5628613 -.0854954 1996 | -.3209233 .1232157 -2.60 0.009 -.5624216 -.079425 1997 | -.3378189 .1218752 -2.77 0.006 -.5766898 -.098948 1998 | -.3765876 .1224761 -3.07 0.002 -.6166364 -.1365388 1999 | -.3684449 .1227139 -3.00 0.003 -.6089598 -.1279301 2000 | -.3515135 .1222893 -2.87 0.004 -.591196 -.1118309 2001 | -.3942174 .12308 -3.20 0.001 -.6354497 -.1529851 2002 | -.4161021 .1223718 -3.40 0.001 -.6559463 -.1762578 2003 | -.3845803 .1243737 -3.09 0.002 -.6283482 -.1408123 2004 | -.4208611 .1257445 -3.35 0.001 -.6673157 -.1744064 2005 | -.4245245 .1245079 -3.41 0.001 -.6685555 -.1804935 2006 | -.3782574 .1246028 -3.04 0.002 -.6224744 -.1340404 2007 | -.3389723 .1231374 -2.75 0.006 -.5803171 -.0976275 2008 | -.3495783 .1230977 -2.84 0.005 -.5908454 -.1083113 2009 | -.4103811 .1246504 -3.29 0.001 -.6546915 -.1660708 2010 | -.3419459 .1267592 -2.70 0.007 -.5903893 -.0935025 2011 | -.4806655 .1263132 -3.81 0.000 -.7282349 -.2330962 2012 | -.5817466 .1290966 -4.51 0.000 -.8347713 -.3287218 2013 | -.5416179 .1290759 -4.20 0.000 -.794602 -.2886337 2014 | -.5054038 .1272834 -3.97 0.000 -.7548748 -.2559329 2015 | -.5511463 .1274472 -4.32 0.000 -.8009383 -.3013544 2016 | -.512947 .1271212 -4.04 0.000 -.7621 -.2637939 2017 | -.4858209 .1276319 -3.81 0.000 -.7359748 -.2356669 2018 | -.5862867 .1372313 -4.27 0.000 -.8552551 -.3173182 2019 | -.674928 .1711089 -3.94 0.000 -1.010295 -.3395608 | naics2 | 21 | -.3325314 .0949668 -3.50 0.000 -.5186629 -.1463998 22 | -.0521812 .1039988 -0.50 0.616 -.256015 .1516526 23 | .0733619 .1022456 0.72 0.473 -.1270359 .2737596 31 | -.1820533 .0938883 -1.94 0.052 -.366071 .0019643 32 | -.5436712 .0897481 -6.06 0.000 -.7195743 -.3677682 33 | -.3229373 .0814436 -3.97 0.000 -.4825638 -.1633108 42 | -.2101065 .1001019 -2.10 0.036 -.4063026 -.0139104 44 | .1224316 .1096664 1.12 0.264 -.0925107 .3373738 45 | .0975564 .1274045 0.77 0.444 -.1521518 .3472646 51 | -.2685584 .0896612 -3.00 0.003 -.4442912 -.0928257 52 | -.2307234 .0879134 -2.62 0.009 -.4030305 -.0584162 53 | -.2345138 .0937569 -2.50 0.012 -.4182739 -.0507537 54 | -.0763391 .0938583 -0.81 0.416 -.2602979 .1076197 56 | -.0418498 .1035886 -0.40 0.686 -.2448797 .1611801 62 | -.1420314 .101501 -1.40 0.162 -.3409698 .056907 71 | .072057 .1299535 0.55 0.579 -.1826472 .3267613 99 | -.0610206 .1295897 -0.47 0.638 -.3150119 .1929706 | _cons | .1762036 .154717 1.14 0.255 -.1270363 .4794434 ---------------+---------------------------------------------------------------- sigma_u | .48242357 sigma_e | .21949815 rho | .82848917 (fraction of variance due to u_i) -------------------------------------------------------------------------------- Instrumented: nb_cp Instruments: fr_growth lag_gap log_intangible log_rd logemp firm_age 1952.year 1953.year 1954.year 1955.year 1956.year 1957.year 1958.year 1959.year 1960.year 1961.year 1962.year 1963.year 1964.year 1965.year 1966.year 1967.year 1968.year 1969.year 1970.year 1971.year 1972.year 1973.year 1974.year 1975.year 1976.year 1977.year 1978.year 1979.year 1980.year 1981.year 1982.year 1983.year 1984.year 1985.year 1986.year 1987.year 1988.year 1989.year 1990.year 1991.year 1992.year 1993.year 1994.year 1995.year 1996.year 1997.year 1998.year 1999.year 2000.year 2001.year 2002.year 2003.year 2004.year 2005.year 2006.year 2007.year 2008.year 2009.year 2010.year 2011.year 2012.year 2013.year 2014.year 2015.year 2016.year 2017.year 2018.year 2019.year 21.naics2 22.naics2 23.naics2 31.naics2 32.naics2 33.naics2 42.naics2 44.naics2 45.naics2 51.naics2 52.naics2 53.naics2 54.naics2 56.naics2 62.naics2 71.naics2 99.naics2 innov_index . . ivreg2 d_loglp fr_growth lag_gap log_intangible log_rd logemp firm_age /// > i.year i.naics2 (nb_cp=innov_index) if Frontier == 0, cluster(gvkey) IV (2SLS) estimation -------------------- Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity and clustering on gvkey Number of clusters (gvkey) = 2172 Number of obs = 18045 F( 92, 2171) = 11.12 Prob > F = 0.0000 Total (centered) SS = 1083.295632 Centered R2 = -0.0599 Total (uncentered) SS = 1108.40422 Uncentered R2 = -0.0359 Residual SS = 1148.158639 Root MSE = .2522 -------------------------------------------------------------------------------- | Robust d_loglp | Coefficient std. err. z P>|z| [95% conf. interval] ---------------+---------------------------------------------------------------- nb_cp | -.0043337 .0028194 -1.54 0.124 -.0098597 .0011924 fr_growth | .05528 .0108574 5.09 0.000 .0339998 .0765601 lag_gap | .0943791 .0078615 12.01 0.000 .0789708 .1097875 log_intangible | .0038313 .0019486 1.97 0.049 .0000121 .0076505 log_rd | .0205121 .0029973 6.84 0.000 .0146374 .0263868 logemp | -.0167956 .0044938 -3.74 0.000 -.0256033 -.0079878 firm_age | -.0001927 .0004979 -0.39 0.699 -.0011686 .0007832 | year | 1952 | .0128839 .0952745 0.14 0.892 -.1738506 .1996185 1953 | .0958709 .10507 0.91 0.362 -.1100626 .3018044 1954 | -.0246161 .1165839 -0.21 0.833 -.2531163 .2038842 1955 | .0098143 .1211598 0.08 0.935 -.2276546 .2472832 1956 | -.0104543 .093212 -0.11 0.911 -.1931464 .1722378 1957 | .0129183 .0924923 0.14 0.889 -.1683633 .1941999 1958 | -.0291111 .1053856 -0.28 0.782 -.2356631 .1774408 1959 | -.050061 .1178718 -0.42 0.671 -.2810854 .1809634 1960 | -.0546584 .1066312 -0.51 0.608 -.2636517 .1543348 1961 | -.0251373 .1037336 -0.24 0.809 -.2284514 .1781768 1962 | -.0625013 .1160197 -0.54 0.590 -.2898957 .1648931 1963 | -.0535668 .1080296 -0.50 0.620 -.265301 .1581674 1964 | -.0142636 .1142841 -0.12 0.901 -.2382562 .2097291 1965 | -.096433 .1148438 -0.84 0.401 -.3215227 .1286567 1966 | -.0634798 .1090455 -0.58 0.560 -.277205 .1502454 1967 | -.0995556 .1129192 -0.88 0.378 -.3208732 .1217621 1968 | -.072371 .1128219 -0.64 0.521 -.2934978 .1487557 1969 | -.0833136 .1129207 -0.74 0.461 -.3046341 .1380069 1970 | -.0387594 .1111377 -0.35 0.727 -.2565853 .1790665 1971 | -.0419807 .1102024 -0.38 0.703 -.2579735 .1740121 1972 | -.0154236 .1100865 -0.14 0.889 -.2311892 .200342 1973 | -.05089 .110314 -0.46 0.645 -.2671015 .1653215 1974 | -.0837 .1104576 -0.76 0.449 -.3001929 .132793 1975 | -.1264329 .1111489 -1.14 0.255 -.3442807 .0914149 1976 | -.0336202 .1102972 -0.30 0.761 -.2497988 .1825585 1977 | -.05166 .1099393 -0.47 0.638 -.267137 .163817 1978 | -.0417988 .1100085 -0.38 0.704 -.2574115 .173814 1979 | -.0317522 .1099878 -0.29 0.773 -.2473243 .1838199 1980 | -.0842467 .1105141 -0.76 0.446 -.3008503 .1323569 1981 | -.097152 .1104139 -0.88 0.379 -.3135593 .1192553 1982 | -.0705939 .1098683 -0.64 0.521 -.2859319 .1447441 1983 | -.0657705 .1105615 -0.59 0.552 -.2824671 .1509261 1984 | -.0063699 .1110492 -0.06 0.954 -.2240223 .2112824 1985 | -.0322631 .1113514 -0.29 0.772 -.2505079 .1859817 1986 | -.0270527 .111519 -0.24 0.808 -.245626 .1915205 1987 | -.0171148 .111581 -0.15 0.878 -.2358096 .20158 1988 | -.0441947 .1114284 -0.40 0.692 -.2625903 .1742008 1989 | -.1154639 .1117717 -1.03 0.302 -.3345324 .1036045 1990 | -.0650903 .1115886 -0.58 0.560 -.2837999 .1536192 1991 | -.0657566 .1108142 -0.59 0.553 -.2829484 .1514353 1992 | -.0596378 .1112055 -0.54 0.592 -.2775966 .1583211 1993 | -.056129 .110778 -0.51 0.612 -.2732499 .1609919 1994 | -.0451688 .1115111 -0.41 0.685 -.2637265 .1733889 1995 | -.0730855 .1119592 -0.65 0.514 -.2925214 .1463505 1996 | -.0611862 .1122911 -0.54 0.586 -.2812728 .1589004 1997 | -.0744509 .1120481 -0.66 0.506 -.2940611 .1451593 1998 | -.0956299 .1120439 -0.85 0.393 -.3152319 .1239721 1999 | -.0888379 .1121245 -0.79 0.428 -.3085979 .1309221 2000 | -.0433057 .1120501 -0.39 0.699 -.2629198 .1763084 2001 | -.1106013 .1126249 -0.98 0.326 -.3313421 .1101396 2002 | -.1306693 .1116332 -1.17 0.242 -.3494663 .0881278 2003 | -.0705411 .1124902 -0.63 0.531 -.2910177 .1499356 2004 | -.0961206 .1125033 -0.85 0.393 -.316623 .1243818 2005 | -.1165383 .1123751 -1.04 0.300 -.3367894 .1037128 2006 | -.0914046 .1124241 -0.81 0.416 -.3117517 .1289425 2007 | -.0665785 .1120089 -0.59 0.552 -.2861119 .1529548 2008 | -.0794525 .1116307 -0.71 0.477 -.2982446 .1393397 2009 | -.14715 .1129864 -1.30 0.193 -.3685993 .0742993 2010 | -.0512294 .1136283 -0.45 0.652 -.2739369 .171478 2011 | -.1507805 .1125098 -1.34 0.180 -.3712957 .0697348 2012 | -.21483 .1141982 -1.88 0.060 -.4386544 .0089944 2013 | -.1793044 .1147935 -1.56 0.118 -.4042956 .0456868 2014 | -.1481436 .1138088 -1.30 0.193 -.3712048 .0749176 2015 | -.1940603 .1137458 -1.71 0.088 -.4169979 .0288773 2016 | -.1519657 .113707 -1.34 0.181 -.3748273 .0708959 2017 | -.1121644 .1138888 -0.98 0.325 -.3353823 .1110535 2018 | -.1630929 .112947 -1.44 0.149 -.3844649 .0582791 2019 | -.1551232 .114523 -1.35 0.176 -.3795841 .0693378 | naics2 | 21 | -.2348334 .0638334 -3.68 0.000 -.3599445 -.1097223 22 | -.0268351 .0583537 -0.46 0.646 -.1412061 .087536 23 | .0601628 .0807291 0.75 0.456 -.0980634 .218389 31 | -.154002 .0573798 -2.68 0.007 -.2664642 -.0415397 32 | -.282569 .0577642 -4.89 0.000 -.3957848 -.1693532 33 | -.1908146 .0565469 -3.37 0.001 -.3016446 -.0799847 42 | -.1428124 .0638389 -2.24 0.025 -.2679345 -.0176904 44 | -.0298656 .0727159 -0.41 0.681 -.1723862 .112655 45 | -.0347025 .0701206 -0.49 0.621 -.1721364 .1027314 51 | -.1726631 .0574031 -3.01 0.003 -.2851711 -.060155 52 | -.1394516 .0566348 -2.46 0.014 -.2504537 -.0284495 53 | -.1662955 .0579644 -2.87 0.004 -.2799037 -.0526873 54 | -.0899666 .0584149 -1.54 0.124 -.2044576 .0245245 56 | -.1523446 .0765918 -1.99 0.047 -.3024618 -.0022273 62 | -.1331588 .067334 -1.98 0.048 -.2651311 -.0011865 71 | -.1121225 .0696005 -1.61 0.107 -.2485368 .0242919 99 | -.0797737 .0608704 -1.31 0.190 -.1990775 .0395301 | _cons | .0902494 .1228108 0.73 0.462 -.1504554 .3309541 -------------------------------------------------------------------------------- Underidentification test (Kleibergen-Paap rk LM statistic): 4.430 Chi-sq(1) P-val = 0.0353 ------------------------------------------------------------------------------ Weak identification test (Cragg-Donald Wald F statistic): 27.144 (Kleibergen-Paap rk Wald F statistic): 4.429 Stock-Yogo weak ID test critical values: 10% maximal IV size 16.38 15% maximal IV size 8.96 20% maximal IV size 6.66 25% maximal IV size 5.53 Source: Stock-Yogo (2005). Reproduced by permission. NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors. ------------------------------------------------------------------------------ Warning: estimated covariance matrix of moment conditions not of full rank. overidentification statistic not reported, and standard errors and model tests should be interpreted with caution. Possible causes: number of clusters insufficient to calculate robust covariance matrix singleton dummy variable (dummy with one 1 and N-1 0s or vice versa) partial option may address problem. ------------------------------------------------------------------------------ Instrumented: nb_cp Included instruments: fr_growth lag_gap log_intangible log_rd logemp firm_age 1952.year 1953.year 1954.year 1955.year 1956.year 1957.year 1958.year 1959.year 1960.year 1961.year 1962.year 1963.year 1964.year 1965.year 1966.year 1967.year 1968.year 1969.year 1970.year 1971.year 1972.year 1973.year 1974.year 1975.year 1976.year 1977.year 1978.year 1979.year 1980.year 1981.year 1982.year 1983.year 1984.year 1985.year 1986.year 1987.year 1988.year 1989.year 1990.year 1991.year 1992.year 1993.year 1994.year 1995.year 1996.year 1997.year 1998.year 1999.year 2000.year 2001.year 2002.year 2003.year 2004.year 2005.year 2006.year 2007.year 2008.year 2009.year 2010.year 2011.year 2012.year 2013.year 2014.year 2015.year 2016.year 2017.year 2018.year 2019.year 21.naics2 22.naics2 23.naics2 31.naics2 32.naics2 33.naics2 42.naics2 44.naics2 45.naics2 51.naics2 52.naics2 53.naics2 54.naics2 56.naics2 62.naics2 71.naics2 99.naics2 Excluded instruments: innov_index ------------------------------------------------------------------------------ . weakivtest (obs=18,045) Montiel-Pflueger robust weak instrument test -------------------------------------------- Effective F statistic: 4.429 Confidence level alpha: 5% -------------------------------------------- -------------------------------------------- Critical Values TSLS LIML -------------------------------------------- % of Worst Case Bias tau=5% 37.418 37.418 tau=10% 23.109 23.109 tau=20% 15.062 15.062 tau=30% 12.039 12.039 --------------------------------------------
Given the above results, I would like to hear advice on whether to use IV approach or not.
To the best of my knowledge, I was thinking that university's innovation does not directly affect firm-level productivity growth (which might be wrong).
Would it be possible to hear any advice regarding the output of these models and testing instrument variable before performing the regression in Stata, please?
Thank you in advance!
Comment