Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Advice on bootstrap sampling two-stage regressions

    Hello everyone!

    I am trying to randomly draw samples T times with replacements to compute first-stage regressions' residuals. Then, I want to put fitted residuals to the second-stage regression to compute and store the beta coefficients. However, Stata shows the following messages which got me very confused, does anyone possibly know what is the issue? How to address those problems? Many thanks to you in advance!


    Code:
    . bootstrap b3=r(b_a) , reps(100) saving(contro_function, replace): boot14
    (running boot14 on estimation sample)
    
    warning: boot14 does not set e(sample), so no observations will be excluded from the resampling because of missing values or other reasons. To exclude observations, press Break, save
             the data, drop any observations that are to be excluded, and rerun bootstrap.
    
    Bootstrap replications (100)
    ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
    xxxxxxx.xxxx..xx.xx.xxxxxxxxxxxxxxxxxxxx.xxxxxxxxx    50
    xxxxx.xxxxxx.xxxx..xxxx..xxxx.xxxxxx.xx..xx.x.xxxx   100
    
    Bootstrap results                                       Number of obs = 49,576
                                                            Replications  =     18
    
          Command: boot14
               b3: r(b_a)
    
    ------------------------------------------------------------------------------
                 |   Observed   Bootstrap                         Normal-based
                 | coefficient  std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
              b3 |    .613626   .2946258     2.08   0.037     .0361699    1.191082
    ------------------------------------------------------------------------------
    Note: One or more parameters could not be estimated in 82 bootstrap replicates;
          standard-error estimates include only complete replications.
    
    .
    end of do-file
    Please see my code here:
    Code:
        
    capture program drop boot14
    program boot14, rclass
    
            preserve
             bsample
            reg inv iv , vce(robust)
            predict resid, res
            reg ret invdc inv resid , vce(robust)
            return scalar b_a = _b[invdc]
            drop resid
    
            restore
    end
    
    * Collect the estimates of the bootstrapped sample        
    bootstrap b3=r(b_a) , reps(100) saving(contro_function, replace): boot14

    Here is my data:

    ----------------------- copy starting from the next line -----------------------
    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input double ret    float(inv     invdc)    double iv
     -.04961428089401898 .27005982    -.018155484                       .
     -.22056605676334473 .38821965    -.004845029     -.03668068251172739
     -.30930798818028893  .3278764    -.004243195    -.062490352716676655
     -.28010347604012575 .21072122     .006785414     .048175694128725126
      -.3166547796891288 .23121995     .012376579     -.06262456728486036
      -.6227323268790463 .14336672    -.002691276      -.1060585855727873
        .522053674851257 .10208935       .0078618     -.03944522899664229
       .5116373331489146 .15423504     .003860576    -.034474051513488695
      .24594192118342972  .2832655      .03689085    -.013788257404424561
      .19048281210629514 .24740204     -.01240136     .012619003363873898
      -.3468500246974311  .1976828     .004125444      .04293385635537561
      .08468538976898499 .13579234  .000017993518      -.0828613503690576
     .012087733895459918  .1040323    -.006565377    .0028409437131981757
       .0981714967389784 .12642549    -.003823944     .015950791820917704
       -.421654401904177  .3526083     .002882691    -.015327869129746603
      .25985248333123856 .27447456      .00368424    -.015176815422213016
     .033568135800547294  .1575507     .002577797   -.0009150401014267118
      .22760554480840534  .2600849    -.009664644       -.019712306061733
     -.15425974286047728 .14738914   -.0030249904     -.03286786335391096
       .2377130868318209  .1590743     -.00399914      .01874695899823564
      .11584696099381486 .18521783     .004759869      .05879432299601225
     -.13685296251250045  .5926506     -.01016756                       .
      -.6469602332942868   .521215      .02071587     -.04239908948921009
       .7713922366950607  .4290733   -.0001871994     -.04582238089298024
       .6919125183374604 .59097844       .0841539      .02545973878039111
      -.4544929246339886  .3740958    -.022775736     -.07649530688318214
      -.6686547306332866 .23428753    -.009759367       -.164069739964625
       .3021467039340917 .23158322      .08334582     -.03148858995891537
     -.16159175354202404 .29197618    -.036953863     -.01482461778616159
    -.007572702591820635  .3061119     -.01209638     .022289722670260897
      -.3244985355848873  .3610792     .014103292     .049792709051736245
      .08220222739426752  .3883219     .004898537     .017333730036811587
     -.39037259330319507  .3394877     .007707188     -.05736642171015976
      .05121732268705548  .2354993    -.035101276    .0037941752971911453
      .34518984038627387  .3103733      .05790906    -.006278144067133931
      -.7661222219639945  .7806057      -.0539926       .0726931281387806
      .08564601776069591  .5188672    -.008382258                       .
        .641135595802165  .4194906     .002710148    -.018430050109120192
     -.11524121198065007  .3842449     .001183503     -.00800828787499125
       .2314459101234858   .425507      .02636023      .00603116119301379
      -.5396029819875243 .56169444    -.021314517     -.05398362768607879
      -.3221066632221051  .4327949    .0033623064     -.13595821782196496
      .15943604077057638  .4020001     .022754414      -.0346096129325462
     -.43039446857547303  .3646158     .015180438    -.024448523750071508
        .588178083697054  .3596764       .1971532 -.000025684929303087384
     -.41501228676146773 .36189035     -.15974565      .03088731848647386
     -.10130267800731751  .4252713      .05832109     .006368301309506889
    -.009372464036497274 .25317362    -.005291224     -.03586177889115384
      -.2391491532653609  .4109194    -.017830778                       .
     -.19032729018606365  .3870602     .002762641    -.012229419701747216
      -.9968585119421673  .3840435      .11000445    -.056589479188837256
       .4151014677942739  .2984484     -.15683134     .014759344651901233
      .07944815834990004  .3983275     .030118853                       .
     -.32546071485677774  .4053787    -.013958106    -.023050586829970906
      .21979491074511048  .3434953    -.011251494    -.034518272591513875
      .16133994638474003 .26964176     .009738836      .05695797016243078
      -.5480336987937037  .3268756        .039581      -.0627174328094884
     -.22650788661236143  .2218887     -.02100811     -.14721327322470457
       .5687108942362402  .2141341     .070194356    -.049831356846795016
      .03851558811911193  .2302409   -.0007711676    .0017666128610640223
      -.1479819461550158 .23356475     -.01561847        .033795040186777
       .4928531179974518  .1915909    .0004004981                       .
      .06580597372119801 .08696392    -.001646371     -.03529262656229548
      -.7574855989429666 .11176958     .012034748      -.0147836056688296
     -.39692046707654216 .05868051    .0003068448    -.036773062873786934
      -.7143130043022057 .07815827    .0014305165   -.0023692470276728272
       .8908390752705106 .10033725   -.0012404296     -.05269610253162682
       .6033056771719045  .3558868   -.0004040371     .007281687459908426
       .4399986335696273 .26634738   .00057600567     .016590163596750546
        .260759780474889 .20646103   .00037838775    -.007096713929462969
     -.38920400195739824  .3211156    .0011154452    -.052106093063706616
      .36296535601424806 .12959677    .0006802364    -.026209391047900904
       .1902169359068886  .1601058     .012304164    -.029344624476895356
       .0834252956086814 .16636625     .012786265    -.027927392136512533
       .6363697742970658  .1771918      .02190958     -.02368090489314151
      .19480024532143925  .7806057    -.007592358    -.002801563784790536
      -.3962695527952501 .18499543     .009195429     -.02769168761706506
      .46892422432478775  .1321885    .0040908814      .03159921399477147
      -.7268929972589191 .13125807    -.004834705      .04792182846358628
     -.20992364682059328  .3709257 -.000016004997                       .
       .8724147579565111  .4259396     -.06036609    -.031577382391638875
      1.2859963622247264  .7065114      .12332215     .015757691085929292
     -.12233336623991409  .4269331     .005192142     -.07625623681712136
     -.17456024476700394  .2072808    -.015039855     -.13811262130202082
      .10461240017864437 .25829524     .007265656     -.03286392702850016
        .511379267464722  .1804669     .017180432    -.011521413416549975
      -.5451487831511342   .166608    -.014764564     .010678725843899882
      .24077539025922312  .3630988      .01435876      .03392699563604158
      .05352109865887811  .3404038     -.00605064    -.022077275064345616
       3.002721087811331 .19113117   -.0002786142     .009721547126294658
     -.17310391599029817  .2520371     .011657045     .038817633376715496
     -.08716938987597489  .2996293     .009558694     -.05291935144036653
     -.36123546122881467  .0873573     -.00260941     -.08779181192048348
      .19541293665373471  .1125001    .0034848615     -.02577926188819724
      -.4254276831795182 .15688044     -.00302927    -.011051689069427087
      .30158598056836583  .2493175     .013656947     .010457821211457484
     -.26806393900943715 .11325236     .005364159     .029160899795695316
    -.061702723553927585 .19365713    -.014212267    .0022330899325121814
     -.04570330720729854   .331943    -.017650666     -.05529634692400231
      -.1561729747619951 .11007726    .0087314285      .04530653828987852
    end
    ------------------ copy up to and including the previous line ------------------

    Listed 100 out of 49576 observations
    Use the count() option to list more
    Last edited by Jae Li; 10 Aug 2022, 10:09.

  • #2
    I have the same issue and would really appreciate if someone could address this question ! Thank you.

    Comment

    Working...
    X