With my one endogenous variable and one instrumental variable, I'm testing the strength of IV by seeing the confidence interval of Anderson -Rubin.
Since the p-value of AR ( 0.0447 ) is less than 0.05, I can say that my instrument is strong, right?
Since the p-value of AR ( 0.0447 ) is less than 0.05, I can say that my instrument is strong, right?
Code:
weakiv Estimating confidence sets over 100 grid points ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 .................................................. 50 .................................................. 100 Weak instrument robust tests and confidence sets for linear IV H0: beta[dep_variable:endogen_var] = 0 ------------------------------------------------------------------------------ Test | Statistic p-value | Conf. level Conf. Set ------+---------------------------------+------------------------------------- AR | chi2(1) = 4.03 0.0447 | 95% [ .000921, ... ] ------+---------------------------------+------------------------------------- Wald | chi2(1) = 6.09 0.0136 | 95% [ .003573, .031205] ------------------------------------------------------------------------------ Confidence sets estimated for 100 points in [-.010243, .045021]. Number of obs N = 1954820. Method = lagrange multiplier (LM). Tests robust to heteroskedasticity and clustering on county (N_clust=406). Wald statistic in last row is based on ivreg2 estimation and is not robust to weak instruments.
Comment