Dear members,
I am fairly new to Stata and would appreciate your help.
I am writing my thesis and I want to to measure the effect of the financial crisis on intergenerational income mobility.
I am trying to find the effect of the crisis on the rank-rank slope (As defined in Chetty et al. 2014. Where is the land of Opportunity? The Geography of Intergenerational Mobility in the United States, https://academic.oup.com/qje/article/129/4/1553/1853754), and I'm using a Sharp Regression Discontinuity Design for that.
My data looks like this (it runs from 2004 to 2014):
My specification is Rcit = α0 + α1Rpit + α2 × post + α3(Rpit × post) + εit (Rcit being child income rank, Rpcit being the father income rank and post being the time dummy for my cutoff - it's =0 pre and =1 post)
First I wanted to check the Rank rank slope, so I ran
reg ptile ptileFather (ptile = percentile = rank in my sample, for children and fathers) in Stata (version 16.1) and got:
Source | SS df MS Number of obs = 857
-------------+---------------------------------- F(1, 855) = 4.66
Model | 3870.98541 1 3870.98541 Prob > F = 0.0311
Residual | 710046.405 855 830.463632 R-squared = 0.0054
-------------+---------------------------------- Adj R-squared = 0.0043
Total | 713917.391 856 834.015644 Root MSE = 28.818
------------------------------------------------------------------------------
ptile | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
ptileFather | -.0736354 .0341064 -2.16 0.031 -.1405776 -.0066933
_cons | 54.15658 1.982127 27.32 0.000 50.26617 58.04698
------------------------------------------------------------------------------
This is pretty clear.
However, now I have ran the command reg c.ptile c.ptileFather##t, r to get the effect of the crisis and got the following (unfortunately no significant) which I cannot interpret:
Linear regression Number of obs = 857
F(3, 853) = 2.69
Prob > F = 0.0451
R-squared = 0.0102
Root MSE = 2.3513
------------------------------------------------------------------------------
| Robust
Rank | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Rankfath | .0357066 .0499495 0.71 0.475 -.0623316 .1337449
1.t | .1928553 .5266254 0.37 0.714 -.8407781 1.226489
|
t#c.Rankfath |
1 | -.0795672 .0640849 -1.24 0.215 -.2053498 .0462153
|
_cons | 3.099359 .4057073 7.64 0.000 2.303057 3.895661
------------------------------------------------------------------------------
My first question would be: Am I right to think that the second line gives me α2 from my specification? This would be the effect of the crisis.
My second question is: This is a time-based RDD, so it's difficult to compute a graph using -rdplot- to showcase the evolution of the rank rank slope (RRS) and ideally a jump when I don't have daily or monthly data, right? Would there be any other way to showcase the evolution over the years? For now, the only graph that I can compute is the RRS (Child rank as Y and father rank as X).
Thanks a lot for your time!
Best,
Melanie
I am fairly new to Stata and would appreciate your help.
I am writing my thesis and I want to to measure the effect of the financial crisis on intergenerational income mobility.
I am trying to find the effect of the crisis on the rank-rank slope (As defined in Chetty et al. 2014. Where is the land of Opportunity? The Geography of Intergenerational Mobility in the United States, https://academic.oup.com/qje/article/129/4/1553/1853754), and I'm using a Sharp Regression Discontinuity Design for that.
My data looks like this (it runs from 2004 to 2014):
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float year double idpers long idhous byte sex int(birthy age) byte relarp float(totygCPI Rank) double idfath__ byte ownkid double CPI float(rtotygPARENT Rankfath t ptile ptileFather) 2004 1428104 14281 1 1978 26 4 14220.602 1 1428101 3 107.5 74604.65 7 0 33 28 2004 2147104 21471 1 1979 25 4 68732.91 7 2147102 6 111 194594.6 10 0 89 91 2004 2147105 21471 2 1980 24 4 30628.99 2 2147102 6 111 194594.6 10 0 50 91 2004 2338103 23381 1 1979 25 4 2917.0464 1 2338101 2 108.9 122320.48 10 0 9 64 2004 2693103 26931 1 1976 28 4 41595.26 3 2693101 2 106.4 122180.45 10 0 61 64 2004 3099104 30991 1 1979 25 4 45606.2 3 3099101 3 108.9 51576.68 4 0 66 14 2004 3596104 35961 1 1979 25 4 6381.039 1 3596101 4 108.2 258777.27 10 0 17 97 2004 3596106 35961 1 1979 25 4 6563.354 1 3596101 4 108.2 258777.27 10 0 17 96 2004 3697101 36971 2 1978 26 4 54694.62 5 3697103 4 108.9 62072.54 6 0 76 20 2004 20198103 201981 1 1980 24 4 36809.48 3 20198102 3 109.7 273473.1 10 0 56 98 2004 20989104 209891 2 1976 28 4 66271.65 6 20989101 2 109.7 49225.16 4 0 87 12 2004 21395103 213951 2 1978 26 4 56882.41 5 21395101 3 113 57522.13 5 0 79 17 2004 21458103 214581 2 1979 25 4 9115.7705 1 21458101 2 115.2 52256.95 4 0 24 15 2004 21612103 216121 1 1980 24 4 57429.35 5 21612101 3 109.7 48395.63 4 0 80 11 2004 22047103 220471 2 1977 27 4 59671.83 5 22047101 1 109.7 76572.47 8 0 82 29 2004 22850103 228501 2 1976 28 4 33181.402 2 22850101 1 109.7 164083.86 10 0 53 84 2004 23155103 231551 1 1975 29 4 60774.84 6 23155101 2 115.8 12435.233 1 0 84 3 2004 23155104 231551 1 1978 26 4 47402 4 23155101 2 115.8 12435.233 1 0 68 3 2004 23375103 233751 1 1978 26 4 52670.92 4 23375101 2 109.7 70191.43 7 0 74 25 2004 23572103 235721 1 1979 25 4 3646.308 1 23572101 1 115.8 1727.1157 1 0 9 1 2004 23867101 238671 1 1978 26 4 3746.5815 1 23867104 5 113 91769.91 9 0 10 40 2004 23972103 239721 2 1978 26 4 35113.945 3 23972102 2 113 126548.67 10 0 55 67 2004 24022103 240221 1 1980 24 4 18960.803 2 24022101 1 109.7 76572.47 8 0 38 29 end label values idpers IDPERS label values idhous IDHOUS04 label values sex SEX04 label def SEX04 1 "man", modify label def SEX04 2 "woman", modify label values birthy BIRTHY label values age AGE04 label values relarp RELARP04 label def RELARP04 4 "Son/daughter of Reference Person or spouse/cohabite", modify label values idfath__ IDFATH_ label values ownkid OWNKID04
My specification is Rcit = α0 + α1Rpit + α2 × post + α3(Rpit × post) + εit (Rcit being child income rank, Rpcit being the father income rank and post being the time dummy for my cutoff - it's =0 pre and =1 post)
First I wanted to check the Rank rank slope, so I ran
reg ptile ptileFather (ptile = percentile = rank in my sample, for children and fathers) in Stata (version 16.1) and got:
Source | SS df MS Number of obs = 857
-------------+---------------------------------- F(1, 855) = 4.66
Model | 3870.98541 1 3870.98541 Prob > F = 0.0311
Residual | 710046.405 855 830.463632 R-squared = 0.0054
-------------+---------------------------------- Adj R-squared = 0.0043
Total | 713917.391 856 834.015644 Root MSE = 28.818
------------------------------------------------------------------------------
ptile | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
ptileFather | -.0736354 .0341064 -2.16 0.031 -.1405776 -.0066933
_cons | 54.15658 1.982127 27.32 0.000 50.26617 58.04698
------------------------------------------------------------------------------
This is pretty clear.
However, now I have ran the command reg c.ptile c.ptileFather##t, r to get the effect of the crisis and got the following (unfortunately no significant) which I cannot interpret:
Linear regression Number of obs = 857
F(3, 853) = 2.69
Prob > F = 0.0451
R-squared = 0.0102
Root MSE = 2.3513
------------------------------------------------------------------------------
| Robust
Rank | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Rankfath | .0357066 .0499495 0.71 0.475 -.0623316 .1337449
1.t | .1928553 .5266254 0.37 0.714 -.8407781 1.226489
|
t#c.Rankfath |
1 | -.0795672 .0640849 -1.24 0.215 -.2053498 .0462153
|
_cons | 3.099359 .4057073 7.64 0.000 2.303057 3.895661
------------------------------------------------------------------------------
My first question would be: Am I right to think that the second line gives me α2 from my specification? This would be the effect of the crisis.
My second question is: This is a time-based RDD, so it's difficult to compute a graph using -rdplot- to showcase the evolution of the rank rank slope (RRS) and ideally a jump when I don't have daily or monthly data, right? Would there be any other way to showcase the evolution over the years? For now, the only graph that I can compute is the RRS (Child rank as Y and father rank as X).
Thanks a lot for your time!
Best,
Melanie
Comment