Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • regression diagnostics for repeated cross sectional data

    Dear Statalist users,


    I am using repeated cross sectional data from the World Value Survey for my analysis. Down below is an example of how the data ist structured in case this is needed. I am planning to do fixed effects models on country level, i have 35 countries and around 7 waves.

    for example-> "reg political_interest year_survey age i.cow"

    My question is, what regression diagnostics are useful for repeated cross sectional data. I know how to the usual commands like estat vif, rvpplot etc. for normal OLS regression but most of these are not applicable for time series data. Is it enough to time demean the data and then use the usual tests? I coldn't find substitutes in STATA.

    Thank you for your help!

    Sarah


    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input int ysurv double pid int cow_num byte(polinterest sex) int age
    1981 360120001 900 . 1 39
    1981 360120002 900 . 1 34
    1981 360120003 900 . 1 33
    1981 360120004 900 . 2 33
    1981 360120005 900 . 2 42
    1981 360120006 900 . 1 33
    1981 360120007 900 . 1 51
    1981 360120008 900 . 2 36
    1981 360120009 900 . 1 35
    1981 360120010 900 . 2 18
    1981 360120011 900 . 1 34
    1981 360120012 900 . 2 49
    1981 360120013 900 . 2 42
    1981 360120014 900 . 2 22
    1981 360120015 900 . 1 61
    1981 360120016 900 . 2 46
    1981 360120017 900 . 2 41
    1981 360120018 900 . 1 62
    1981 360120019 900 . 2 45
    1981 360120020 900 . 1 45
    end
    label values ysurv S020
    label def S020 1981 "       1981", modify
    label values cow_num COW_NUM
    label def COW_NUM 900 "900.  Australia", modify
    label values polinterest polin1
    label values sex X001
    label def X001 1 "Male", modify
    label def X001 2 "Female", modify
    label values age X003
    Last edited by Sarah Weissmann; 05 Jul 2022, 09:37. Reason: (added Tags)

  • #2
    Does somebody know an answer? Or do I need to explain something further?

    Comment

    Working...
    X