Hi all,
I am analysing the effect of schooling on wealth. I am running regressions using mean financial wealth and the inverse hyperbolic sine of mean financial wealth (to get the % change in wealth with a 1 year increase in schooling).
I noticed that the signs change (positive to negative) between the two regressions which doesn't really make sense. I would like to get some advise on how to address this discrepancy.
Below is the output with mean financial wealth as outcome:

Below is the output with the inverse hyperbolic sine transformed outcome:

I use the formula in Bellemare and Wichman (2020) to convert the coefficient on Z_5 into a semi-elasticity coefficient. Specifically, I run:
predictnl Z_5b = _b[Z_5]*xbar_5a*((sqrt(mean_fw2+1))/mean_fw_main),se(Z_5b_se)
where xbar_5a is the mean of Z_5 and mean_fw2 is the squared mean wealth. The coefficient I get is -10.008 and standard error is 8.209.
The data extract below accounts for the sample restrictions i.e. mainsample & bw_5 above.
Many thanks
Karen
I am analysing the effect of schooling on wealth. I am running regressions using mean financial wealth and the inverse hyperbolic sine of mean financial wealth (to get the % change in wealth with a 1 year increase in schooling).
I noticed that the signs change (positive to negative) between the two regressions which doesn't really make sense. I would like to get some advise on how to address this discrepancy.
Below is the output with mean financial wealth as outcome:
Below is the output with the inverse hyperbolic sine transformed outcome:
I use the formula in Bellemare and Wichman (2020) to convert the coefficient on Z_5 into a semi-elasticity coefficient. Specifically, I run:
predictnl Z_5b = _b[Z_5]*xbar_5a*((sqrt(mean_fw2+1))/mean_fw_main),se(Z_5b_se)
where xbar_5a is the mean of Z_5 and mean_fw2 is the squared mean wealth. The coefficient I get is -10.008 and standard error is 8.209.
The data extract below accounts for the sample restrictions i.e. mainsample & bw_5 above.
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float(mean_fw_main asinhfw_mean_main Z_5 distance sex_main xbar_5a mean_fw2) -2696 -8.592671 11.131124 7 1 10.797332 7268416 -2696 -8.592671 11.131124 7 1 10.797332 7268416 -2567 -8.54364 10.48713 -5 1 10.797332 6589489 -2250 -8.411833 10.357333 -15 1 10.797332 5062500 -2250 -8.411833 10.46117 -7 1 10.797332 5062500 -2190 -8.384804 10.292435 -20 1 10.797332 4796100 -2190 -8.384804 10.371334 -18 2 10.797332 4796100 -2190 -8.384804 10.318394 -18 1 10.797332 4796100 -2190 -8.384804 10.48713 -5 1 10.797332 4796100 -2190 -8.384804 11.145125 4 2 10.797332 4796100 -2190 -8.384804 10.305414 -19 1 10.797332 4796100 -2182 -8.381145 11.144104 8 1 10.797332 4761124 -2182 -8.381145 11.144104 8 1 10.797332 4761124 -2182 -8.381145 11.144104 8 1 10.797332 4761124 -2000 -8.294049 10.331373 -17 1 10.797332 4000000 -1623.6666 -8.085589 11.144104 8 1 10.797332 2636293 -1623.6666 -8.085589 11.144104 8 1 10.797332 2636293 -1623.6666 -8.085589 11.144104 8 1 10.797332 2636293 -1570 -8.051978 11.118145 6 1 10.797332 2464900 -1570 -8.051978 11.118145 6 1 10.797332 2464900 -1500 -8.006368 11.119165 2 2 10.797332 2250000 -1470 -7.986165 11.223004 10 2 10.797332 2160900 -1470 -7.986165 11.223004 10 2 10.797332 2160900 -1326.6666 -7.883572 10.59199 -1 2 10.797332 1760044.4 -1326.6666 -7.883572 10.59199 -1 2 10.797332 1760044.4 -1326.6666 -7.883572 10.59199 -1 2 10.797332 1760044.4 -1308.5 -7.869784 11.247943 16 1 10.797332 1712172.3 -1308.5 -7.869784 11.247943 16 1 10.797332 1712172.3 -1304 -7.866339 11.106186 1 2 10.797332 1700416 -1016.6667 -7.617432 10.501132 -8 2 10.797332 1033611.1 -1016.6667 -7.617432 10.501132 -8 2 10.797332 1033611.1 -1016.6667 -7.617432 10.501132 -8 2 10.797332 1033611.1 -983.3333 -7.584095 11.184065 7 2 10.797332 966944.4 -983.3333 -7.584095 11.184065 7 2 10.797332 966944.4 -983.3333 -7.584095 11.184065 7 2 10.797332 966944.4 -950 -7.54961 10.56603 -3 2 10.797332 902500 -843.5 -7.430707 11.093206 0 2 10.797332 711492.3 -843.5 -7.430707 11.093206 0 2 10.797332 711492.3 -785 -7.358831 10.462193 -11 2 10.797332 616225 -756.6667 -7.322071 10.383293 -13 1 10.797332 572544.5 -756.6667 -7.322071 10.383293 -13 1 10.797332 572544.5 -756.6667 -7.322071 10.383293 -13 1 10.797332 572544.5 -666.6667 -7.195438 11.234962 15 1 10.797332 444444.5 -666.6667 -7.195438 11.234962 15 1 10.797332 444444.5 -666.6667 -7.195438 11.234962 15 1 10.797332 444444.5 -464.1038 -6.833257 10.475172 -10 2 10.797332 215392.3 -464.1038 -6.833257 10.475172 -10 2 10.797332 215392.3 -464.1038 -6.833257 10.475172 -10 2 10.797332 215392.3 -400 -6.684613 10.52607 -2 1 10.797332 160000 -400 -6.684613 11.157084 9 1 10.797332 160000 end
Karen
Comment