Hi!
I want to run regressions where my dependent variable is the share of employment within a particular set of industries in a country and the dependent variable is the percent of people with college degree. For obvious reasons, I cannot run a straight OLS given that the share of employment is bounded [0,1]. Therefore, I tried a couple of fractional regressions as follows using fracreg probit and heteroskedastic probit but I do have a question regarding the marginal effects:
(fracreg probit)
------------------------------------------------------------------------------
(Heteroskedastic Probit)
Why do the signs of the marginal effects get completely changed in the second specification? (Any hint?)
Can I use a fractional regression where I can weaken any distribution assumption and yet get robust results? This change in sign in the marginal effects raised an eyebrow
dataex country year yr_sch yr_sch_pri yr_sch_sec yr_sch_ter lhc lsc lpc tech_intensity
----------------------- copy starting from the next line -----------------------
I want to run regressions where my dependent variable is the share of employment within a particular set of industries in a country and the dependent variable is the percent of people with college degree. For obvious reasons, I cannot run a straight OLS given that the share of employment is bounded [0,1]. Therefore, I tried a couple of fractional regressions as follows using fracreg probit and heteroskedastic probit but I do have a question regarding the marginal effects:
Code:
fracreg probit share_tech lhc i.country i.year if tech_intensity==1
Code:
margins, dyex(lhc) Average marginal effects Number of obs = 10,010 Model VCE : Robust Expression : Conditional mean of share_tech, predict() dy/ex w.r.t. : lhc ------------------------------------------------------------------------------ | Delta-method | dy/ex Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- lhc | -.0060946 .0019015 -3.21 0.001 -.0098215 -.0023677
Code:
fracreg probit share_tech lhc i.country i.year if tech_intensity==1, het(lhc) vce(robust)
Code:
margins, dyex(lhc) Average marginal effects Number of obs = 10,010 Model VCE : Robust Expression : Conditional mean of share_tech, predict() dy/ex w.r.t. : lhc ------------------------------------------------------------------------------ | Delta-method | dy/ex Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- lhc | .0062602 .0023983 2.61 0.009 .0015597 .0109607
Can I use a fractional regression where I can weaken any distribution assumption and yet get robust results? This change in sign in the marginal effects raised an eyebrow
dataex country year yr_sch yr_sch_pri yr_sch_sec yr_sch_ter lhc lsc lpc tech_intensity
----------------------- copy starting from the next line -----------------------
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float country double year float(yr_sch yr_sch_pri yr_sch_sec yr_sch_ter lhc lsc lpc tech_intensity) 4 1975 .97 .622 .259 .089 1.46 .677 .838 0 4 1980 1.293 .816 .357 .12 1.987 1.052 1.524 0 4 1985 1.733 1.162 .421 .151 2.649 1.485 3.154 0 4 1990 2.065 1.44 .448 .177 3.172 1.81 5.004 0 4 2005 3.321 2.29 .807 .224 4.16 6.415 7.616 0 4 2010 3.933 2.683 1.022 .228 4.254 8.638 11.648 0 4 2015 4.826 3.278 1.266 .282 4.967 9.631 18.218 0 4 1975 .97 .622 .259 .089 1.46 .677 .838 1 4 1975 .97 .622 .259 .089 1.46 .677 .838 1 4 1975 .97 .622 .259 .089 1.46 .677 .838 1 4 1975 .97 .622 .259 .089 1.46 .677 .838 1 4 1975 .97 .622 .259 .089 1.46 .677 .838 1 4 1975 .97 .622 .259 .089 1.46 .677 .838 1 4 1975 .97 .622 .259 .089 1.46 .677 .838 1 4 1975 .97 .622 .259 .089 1.46 .677 .838 1 4 1975 .97 .622 .259 .089 1.46 .677 .838 1 4 1975 .97 .622 .259 .089 1.46 .677 .838 1 4 1980 1.293 .816 .357 .12 1.987 1.052 1.524 1 4 1980 1.293 .816 .357 .12 1.987 1.052 1.524 1 4 1980 1.293 .816 .357 .12 1.987 1.052 1.524 1 4 1980 1.293 .816 .357 .12 1.987 1.052 1.524 1 4 1980 1.293 .816 .357 .12 1.987 1.052 1.524 1 4 1980 1.293 .816 .357 .12 1.987 1.052 1.524 1 4 1980 1.293 .816 .357 .12 1.987 1.052 1.524 1 4 1980 1.293 .816 .357 .12 1.987 1.052 1.524 1 4 1980 1.293 .816 .357 .12 1.987 1.052 1.524 1 4 1980 1.293 .816 .357 .12 1.987 1.052 1.524 1 4 1985 1.733 1.162 .421 .151 2.649 1.485 3.154 1 4 1985 1.733 1.162 .421 .151 2.649 1.485 3.154 1 4 1985 1.733 1.162 .421 .151 2.649 1.485 3.154 1 4 1985 1.733 1.162 .421 .151 2.649 1.485 3.154 1 4 1985 1.733 1.162 .421 .151 2.649 1.485 3.154 1 4 1985 1.733 1.162 .421 .151 2.649 1.485 3.154 1 4 1985 1.733 1.162 .421 .151 2.649 1.485 3.154 1 4 1985 1.733 1.162 .421 .151 2.649 1.485 3.154 1 4 1985 1.733 1.162 .421 .151 2.649 1.485 3.154 1 4 1985 1.733 1.162 .421 .151 2.649 1.485 3.154 1 4 1990 2.065 1.44 .448 .177 3.172 1.81 5.004 1 4 1990 2.065 1.44 .448 .177 3.172 1.81 5.004 1 4 1990 2.065 1.44 .448 .177 3.172 1.81 5.004 1 4 1990 2.065 1.44 .448 .177 3.172 1.81 5.004 1 4 1990 2.065 1.44 .448 .177 3.172 1.81 5.004 1 4 1990 2.065 1.44 .448 .177 3.172 1.81 5.004 1 4 1990 2.065 1.44 .448 .177 3.172 1.81 5.004 1 4 1990 2.065 1.44 .448 .177 3.172 1.81 5.004 1 4 1990 2.065 1.44 .448 .177 3.172 1.81 5.004 1 4 1990 2.065 1.44 .448 .177 3.172 1.81 5.004 1 4 2005 3.321 2.29 .807 .224 4.16 6.415 7.616 1 4 2005 3.321 2.29 .807 .224 4.16 6.415 7.616 1 4 2005 3.321 2.29 .807 .224 4.16 6.415 7.616 1 4 2005 3.321 2.29 .807 .224 4.16 6.415 7.616 1 4 2005 3.321 2.29 .807 .224 4.16 6.415 7.616 1 4 2005 3.321 2.29 .807 .224 4.16 6.415 7.616 1 4 2005 3.321 2.29 .807 .224 4.16 6.415 7.616 1 4 2005 3.321 2.29 .807 .224 4.16 6.415 7.616 1 4 2005 3.321 2.29 .807 .224 4.16 6.415 7.616 1 4 2005 3.321 2.29 .807 .224 4.16 6.415 7.616 1 4 2010 3.933 2.683 1.022 .228 4.254 8.638 11.648 1 4 2010 3.933 2.683 1.022 .228 4.254 8.638 11.648 1 4 2010 3.933 2.683 1.022 .228 4.254 8.638 11.648 1 4 2010 3.933 2.683 1.022 .228 4.254 8.638 11.648 1 4 2010 3.933 2.683 1.022 .228 4.254 8.638 11.648 1 4 2010 3.933 2.683 1.022 .228 4.254 8.638 11.648 1 4 2010 3.933 2.683 1.022 .228 4.254 8.638 11.648 1 4 2010 3.933 2.683 1.022 .228 4.254 8.638 11.648 1 4 2010 3.933 2.683 1.022 .228 4.254 8.638 11.648 1 4 2010 3.933 2.683 1.022 .228 4.254 8.638 11.648 1 4 2015 4.826 3.278 1.266 .282 4.967 9.631 18.218 1 4 2015 4.826 3.278 1.266 .282 4.967 9.631 18.218 1 4 2015 4.826 3.278 1.266 .282 4.967 9.631 18.218 1 4 2015 4.826 3.278 1.266 .282 4.967 9.631 18.218 1 4 2015 4.826 3.278 1.266 .282 4.967 9.631 18.218 1 4 2015 4.826 3.278 1.266 .282 4.967 9.631 18.218 1 4 2015 4.826 3.278 1.266 .282 4.967 9.631 18.218 1 4 2015 4.826 3.278 1.266 .282 4.967 9.631 18.218 1 4 2015 4.826 3.278 1.266 .282 4.967 9.631 18.218 1 4 2015 4.826 3.278 1.266 .282 4.967 9.631 18.218 1 4 1975 .97 .622 .259 .089 1.46 .677 .838 2 4 1975 .97 .622 .259 .089 1.46 .677 .838 2 4 1975 .97 .622 .259 .089 1.46 .677 .838 2 4 1975 .97 .622 .259 .089 1.46 .677 .838 2 4 1975 .97 .622 .259 .089 1.46 .677 .838 2 4 1980 1.293 .816 .357 .12 1.987 1.052 1.524 2 4 1980 1.293 .816 .357 .12 1.987 1.052 1.524 2 4 1980 1.293 .816 .357 .12 1.987 1.052 1.524 2 4 1980 1.293 .816 .357 .12 1.987 1.052 1.524 2 4 1980 1.293 .816 .357 .12 1.987 1.052 1.524 2 4 1985 1.733 1.162 .421 .151 2.649 1.485 3.154 2 4 1985 1.733 1.162 .421 .151 2.649 1.485 3.154 2 4 1985 1.733 1.162 .421 .151 2.649 1.485 3.154 2 4 1985 1.733 1.162 .421 .151 2.649 1.485 3.154 2 4 1985 1.733 1.162 .421 .151 2.649 1.485 3.154 2 4 1990 2.065 1.44 .448 .177 3.172 1.81 5.004 2 4 1990 2.065 1.44 .448 .177 3.172 1.81 5.004 2 4 1990 2.065 1.44 .448 .177 3.172 1.81 5.004 2 4 1990 2.065 1.44 .448 .177 3.172 1.81 5.004 2 4 1990 2.065 1.44 .448 .177 3.172 1.81 5.004 2 4 2005 3.321 2.29 .807 .224 4.16 6.415 7.616 2 4 2005 3.321 2.29 .807 .224 4.16 6.415 7.616 2 4 2005 3.321 2.29 .807 .224 4.16 6.415 7.616 2 end
Comment