Hi,
I am spending a good amount of time to succesfully run 'svy bootstrap', but I can't manage to do it.
I am starting to think there might be something wrong with the command when using user-written programs.
Here is a dummy example to make my point:
I'd execpt these two 'svy bootstrap' commands to return the same output, but the command
doesn't estimate standard errors. This is the output you get from these two commands:
Why is this happening?
I am spending a good amount of time to succesfully run 'svy bootstrap', but I can't manage to do it.
I am starting to think there might be something wrong with the command when using user-written programs.
Here is a dummy example to make my point:
Code:
set more off use http://www.stata-press.com/data/r14/nhanes2f, clear set seed 0123456789 svyset psuid [pweight=finalwgt], strata(stratid) psu(psuid) bsweights bw, reps(200) n(-1) dots replace /*to create bootstrap weights*/ svyset psuid [pweight=finalwgt], strata(stratid) psu(psuid) bsrweight(bw*) /*to include bootstrap weights in svyset*/ capture program drop savemargins program savemargins, eclass qui mlogit health i.agegrp##c.zinc [pw=finalwgt], baseoutcome(1) /*this produces the same point estimates of the command above*/ end svy bootstrap _b: mlogit health i.agegrp##c.zinc, baseoutcome(1) svy bootstrap _b: savemargins now
Code:
svy bootstrap _b: savemargins now
Code:
svy bootstrap _b: mlogit health i.agegrp##c.zinc, baseoutcome(1) (running mlogit on estimation sample) Bootstrap replications (200) ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 .................................................. 50 .................................................. 100 .................................................. 150 .................................................. 200 Survey: Multinomial logistic regression Number of obs = 9,188 Population size = 104,162,204 Replications = 200 Wald chi2(44) = 24481.19 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------- | Observed Bootstrap Normal-based health | coefficient std. err. z P>|z| [95% conf. interval] --------------+---------------------------------------------------------------- poor | (base outcome) --------------+---------------------------------------------------------------- fair | agegrp | age30-39 | .6307591 2.784013 0.23 0.821 -4.825807 6.087325 age40-49 | .1858713 2.58411 0.07 0.943 -4.878892 5.250634 age50-59 | -2.285295 2.543675 -0.90 0.369 -7.270807 2.700217 age60-69 | -1.267306 2.125213 -0.60 0.551 -5.432647 2.898035 age 70+ | .0880936 2.255595 0.04 0.969 -4.332792 4.508979 | zinc | .0030401 .0241923 0.13 0.900 -.0443758 .0504561 | agegrp#c.zinc | age30-39 | -.0111744 .030755 -0.36 0.716 -.0714531 .0491042 age40-49 | -.0114104 .0284998 -0.40 0.689 -.0672689 .0444481 age50-59 | .0162348 .0291624 0.56 0.578 -.0409224 .0733919 age60-69 | .00372 .0236476 0.16 0.875 -.0426284 .0500684 age 70+ | -.0123845 .025922 -0.48 0.633 -.0631907 .0384218 | _cons | 1.467004 2.154797 0.68 0.496 -2.756321 5.690329 --------------+---------------------------------------------------------------- average | agegrp | age30-39 | -1.013213 3.008141 -0.34 0.736 -6.909061 4.882635 age40-49 | -1.474417 2.662485 -0.55 0.580 -6.692792 3.743957 age50-59 | -4.576451 2.427487 -1.89 0.059 -9.334237 .1813353 age60-69 | -2.953667 2.391359 -1.24 0.217 -7.640645 1.733312 age 70+ | -2.122265 2.516095 -0.84 0.399 -7.053721 2.809192 | zinc | -.0021463 .0259741 -0.08 0.934 -.0530547 .048762 | agegrp#c.zinc | age30-39 | .0070231 .0336488 0.21 0.835 -.0589273 .0729736 age40-49 | .0014442 .0297591 0.05 0.961 -.0568826 .0597711 age50-59 | .0351228 .027244 1.29 0.197 -.0182744 .08852 age60-69 | .0103388 .0270509 0.38 0.702 -.0426799 .0633575 age 70+ | -.0032432 .0291694 -0.11 0.911 -.0604142 .0539279 | _cons | 3.336288 2.289978 1.46 0.145 -1.151986 7.824562 --------------+---------------------------------------------------------------- good | agegrp | age30-39 | -.4318196 2.692593 -0.16 0.873 -5.709205 4.845565 age40-49 | -2.015888 2.599128 -0.78 0.438 -7.110086 3.07831 age50-59 | -5.141381 2.537319 -2.03 0.043 -10.11443 -.1683265 age60-69 | -3.859092 2.168088 -1.78 0.075 -8.108467 .3902834 age 70+ | -2.179386 2.548777 -0.86 0.393 -7.174897 2.816125 | zinc | .0069424 .0248134 0.28 0.780 -.0416909 .0555757 | agegrp#c.zinc | age30-39 | -.0020289 .0305298 -0.07 0.947 -.0618662 .0578084 age40-49 | .0013358 .028949 0.05 0.963 -.0554031 .0580747 age50-59 | .0319356 .0288228 1.11 0.268 -.0245561 .0884273 age60-69 | .0116608 .0246166 0.47 0.636 -.0365869 .0599084 age 70+ | -.01292 .0291148 -0.44 0.657 -.069984 .044144 | _cons | 2.965805 2.177808 1.36 0.173 -1.302619 7.23423 --------------+---------------------------------------------------------------- excellent | agegrp | age30-39 | -.4955834 2.828905 -0.18 0.861 -6.040135 5.048968 age40-49 | -1.965187 2.680753 -0.73 0.464 -7.219366 3.288992 age50-59 | -4.839694 2.432614 -1.99 0.047 -9.607529 -.071859 age60-69 | -3.345652 2.29151 -1.46 0.144 -7.83693 1.145625 age 70+ | -3.280243 2.783724 -1.18 0.239 -8.736242 2.175755 | zinc | .0106708 .0250371 0.43 0.670 -.038401 .0597426 | agegrp#c.zinc | age30-39 | -.0013921 .0317513 -0.04 0.965 -.0636235 .0608394 age40-49 | .0018209 .0296879 0.06 0.951 -.0563663 .0600081 age50-59 | .0257879 .027434 0.94 0.347 -.0279818 .0795575 age60-69 | -.0013309 .0255839 -0.05 0.959 -.0514744 .0488125 age 70+ | -.0020064 .0320969 -0.06 0.950 -.0649152 .0609024 | _cons | 2.694864 2.207606 1.22 0.222 -1.631964 7.021692 ------------------------------------------------------------------------------- svy bootstrap _b: savemargins now (running savemargins on estimation sample) Bootstrap replications (200) ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 .................................................. 50 .................................................. 100 .................................................. 150 .................................................. 200 Multinomial logistic regression Number of obs = 10,337 Population size = 117,023,659 Replications = 200 Wald chi2(0) = . Prob > chi2 = . ------------------------------------------------------------------------------- | Observed Bootstrap Normal-based health | coefficient std. err. z P>|z| [95% conf. interval] --------------+---------------------------------------------------------------- poor | (base outcome) --------------+---------------------------------------------------------------- fair | agegrp | age30-39 | .6307591 . . . . . age40-49 | .1858713 . . . . . age50-59 | -2.285295 . . . . . age60-69 | -1.267306 . . . . . age 70+ | .0880936 . . . . . | zinc | .0030401 . . . . . | agegrp#c.zinc | age30-39 | -.0111744 . . . . . age40-49 | -.0114104 . . . . . age50-59 | .0162348 . . . . . age60-69 | .00372 . . . . . age 70+ | -.0123845 . . . . . | _cons | 1.467004 . . . . . --------------+---------------------------------------------------------------- average | agegrp | age30-39 | -1.013213 . . . . . age40-49 | -1.474417 . . . . . age50-59 | -4.576451 . . . . . age60-69 | -2.953667 . . . . . age 70+ | -2.122265 . . . . . | zinc | -.0021463 . . . . . | agegrp#c.zinc | age30-39 | .0070231 . . . . . age40-49 | .0014442 . . . . . age50-59 | .0351228 . . . . . age60-69 | .0103388 . . . . . age 70+ | -.0032432 . . . . . | _cons | 3.336288 . . . . . --------------+---------------------------------------------------------------- good | agegrp | age30-39 | -.4318196 . . . . . age40-49 | -2.015888 . . . . . age50-59 | -5.141381 . . . . . age60-69 | -3.859092 . . . . . age 70+ | -2.179386 . . . . . | zinc | .0069424 . . . . . | agegrp#c.zinc | age30-39 | -.0020289 . . . . . age40-49 | .0013358 . . . . . age50-59 | .0319356 . . . . . age60-69 | .0116608 . . . . . age 70+ | -.01292 . . . . . | _cons | 2.965805 . . . . . --------------+---------------------------------------------------------------- excellent | agegrp | age30-39 | -.4955834 . . . . . age40-49 | -1.965187 . . . . . age50-59 | -4.839694 . . . . . age60-69 | -3.345652 . . . . . age 70+ | -3.280243 . . . . . | zinc | .0106708 . . . . . | agegrp#c.zinc | age30-39 | -.0013921 . . . . . age40-49 | .0018209 . . . . . age50-59 | .0257879 . . . . . age60-69 | -.0013309 . . . . . age 70+ | -.0020064 . . . . . | _cons | 2.694864 . . . . . -------------------------------------------------------------------------------
Comment