Dear Statalisters,
I hope you are doing very well. I am doing a multiple hypothesis test correction to p-values using
FWER corrected p values (List, Shiekh, 2019).
I have 8 outcomes and 4 treatment groups (+1 control group).
I want to specify my outcomes and treatment groups in a single-family and see how corrected p-values increase? My intuition is as the number of hypotheses tested increases, my p-value should also increase, however, I am not getting that result which most likely means I am doing something wrong. Also, my p values are incredibly small, making me question my method.
Therefore, I want to ask
- how to specify here via MHTEXP or via an alternate command number of hypothesis test in the multiple hypothesis tests to make the FWER correction.
Your help or any leads on this will be really helpful since I am unable to figure this out for quite a few days now.
My sample data and the exact codes I tried I use are as follows
gen treatment =.
replace treatment=1 if treatment_1==1
replace treatment=2 if treatment_2==1
replace treatment=3 if treatment_3==1
replace treatment=4 if treatment_4==1
mhtexp outcome_1 outcome_2 outcome_3 outcome_4 $controls, treatment(treatment) bootstrap(1000) // WITH and WITHOUT CONTROLS
mhtexp outcome_1 outcome_2 outcome_3 outcome_4 outcome_5 outcome_6 outcome_7 outcome_8 $controls, treatment(treatment) bootstrap(1000) // WITH and WITHOUT CONTROLS
I hope you are doing very well. I am doing a multiple hypothesis test correction to p-values using
FWER corrected p values (List, Shiekh, 2019).
I have 8 outcomes and 4 treatment groups (+1 control group).
I want to specify my outcomes and treatment groups in a single-family and see how corrected p-values increase? My intuition is as the number of hypotheses tested increases, my p-value should also increase, however, I am not getting that result which most likely means I am doing something wrong. Also, my p values are incredibly small, making me question my method.
Therefore, I want to ask
- how to specify here via MHTEXP or via an alternate command number of hypothesis test in the multiple hypothesis tests to make the FWER correction.
Your help or any leads on this will be really helpful since I am unable to figure this out for quite a few days now.
My sample data and the exact codes I tried I use are as follows
gen treatment =.
replace treatment=1 if treatment_1==1
replace treatment=2 if treatment_2==1
replace treatment=3 if treatment_3==1
replace treatment=4 if treatment_4==1
mhtexp outcome_1 outcome_2 outcome_3 outcome_4 $controls, treatment(treatment) bootstrap(1000) // WITH and WITHOUT CONTROLS
mhtexp outcome_1 outcome_2 outcome_3 outcome_4 outcome_5 outcome_6 outcome_7 outcome_8 $controls, treatment(treatment) bootstrap(1000) // WITH and WITHOUT CONTROLS
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input byte(treatment_1 treatment_2 treatment_3 treatment_4 placebo outcome_6 outcome_5) double(outcome_7 outcome_4 outcome_3 outcome_2 outcome_1 outcome_8) byte(control_1 control_2 control_3 control_4 control_5 control_6 control_7 control_8) int cluster 0 1 0 0 0 3 0 .1653932764197893 -.17467090552115214 -.3578288676205426 .032402727645159196 -.26534503698349 -.2238087420821282 2 30 33 1 10 0 0 0 1 0 0 1 0 0 5 1 -.19725712256929778 -.17467090552115214 -.3578288676205426 .4015287542951884 -.13001234829425812 -.2238087420821282 2 30 40 1 10 0 1 1 2 0 1 0 0 0 3 0 .13517240983736548 -.17467090552115214 -.3578288676205426 -.9879681864926527 -.2359367161989212 -.2238087420821282 5 30 50 0 12 0 1 0 3 0 0 0 1 0 1 0 -.015931923074754238 -.17467090552115214 -.3578288676205426 -.40696546501426895 -.22635124623775482 -.2238087420821282 5 30 1 0 14 0 1 1 4 0 0 0 1 0 1 0 .10495154325494163 -.17467090552115214 2.7900279823166945 -.4222489794071104 .3407953381538391 -.2238087420821282 6 20 6 0 14 1 1 1 5 0 0 0 0 1 2 0 -2.7660307820753327 -.17467090552115214 -.3578288676205426 . -.1357412189245224 -.2238087420821282 3 30 40 1 12 0 1 1 6 1 0 0 0 0 2 0 -.2879197223165698 -.17467090552115214 -.3578288676205426 .6973684850587097 -.21412818133831024 -.2238087420821282 5 30 4 1 12 0 0 0 7 0 0 0 0 1 2 0 -.7714535876353528 -.17467090552115214 2.7900279823166945 .9442699696663021 -.07100307196378708 -.2238087420821282 4 30 30 1 12 0 1 1 8 0 1 0 0 0 1 0 .7093688749034205 -.17467090552115214 -.3578288676205426 -.937453325868029 -.2908829152584076 -.2238087420821282 12 30 30 0 12 0 1 1 9 0 1 0 0 0 3 0 .3467184759143334 -.17467090552115214 -.3578288676205426 -.797864071810256 -.14190490543842316 -.2238087420821282 2 30 30 0 14 0 1 1 10 1 0 0 0 0 4 0 -.10659452282202574 -.17467090552115214 -.3578288676205426 -1.2565983455268217 -.3622598350048065 -.2238087420821282 3 30 2 0 12 0 1 1 11 0 0 0 0 1 3 0 .28627674274948517 -.17467090552115214 -.3578288676205426 . .0036175954155623913 -.2238087420821282 7 30 25 1 14 1 1 1 12 1 0 0 0 0 3 0 -.9527787871298963 -.17467090552115214 -.3578288676205426 .05890282286359865 -.32850730419158936 -.2238087420821282 4 30 46 1 14 0 1 1 13 0 0 0 1 0 1 0 -.650570121305657 5.7156201862199225 -.3578288676205426 .6747011595708129 .31842613220214844 -.2238087420821282 8 30 40 0 12 0 1 1 14 0 1 0 0 0 1 0 2.4621791366840093 -.17467090552115214 -.3578288676205426 -.7389419311622704 .014530192129313946 4.460739755981727 5 30 40 0 14 1 1 1 15 0 0 1 0 0 5 1 -.4692449218111134 -.17467090552115214 -.3578288676205426 .49515703563781094 .45657020807266235 -.2238087420821282 3 30 1 1 12 0 1 0 16 0 0 0 1 0 3 0 .3467184759143334 5.7156201862199225 2.7900279823166945 2.3054773245518265 1.084456205368042 -.2238087420821282 3 30 33 0 14 0 0 0 18 0 1 0 0 0 3 0 -.16703625598687394 -.17467090552115214 2.7900279823166945 .21587541560553616 -.35587406158447266 -.2238087420821282 4 30 27 0 12 0 0 0 17 0 0 0 0 1 3 0 -.650570121305657 -.17467090552115214 -.3578288676205426 .5764800738856288 -.3581002652645111 -.2238087420821282 7 30 23 0 14 0 0 0 19 0 0 0 0 1 5 0 -.9527787871298963 -.17467090552115214 -.3578288676205426 1.213643864977265 -.22128960490226746 -.2238087420821282 3 30 40 0 14 0 1 1 20 0 0 1 0 0 5 1 .6489271417385728 -.17467090552115214 -.3578288676205426 . .4726555347442627 -.2238087420821282 3 30 1 0 12 1 0 0 21 1 0 0 0 0 3 0 .46760194224402873 -.17467090552115214 -.3578288676205426 -.44450818127621194 -.19550882279872894 4.460739755981727 2 30 4 1 12 0 0 0 22 1 0 0 0 0 2 0 .316497609331909 -.17467090552115214 -.3578288676205426 -.3967021704897849 .13535897433757782 -.2238087420821282 4 30 17 1 14 0 1 1 23 0 0 0 1 0 3 0 -.5599075215583849 5.7156201862199225 -.3578288676205426 -.06835524381064445 -.06982377916574478 -.2238087420821282 8 30 50 0 14 0 0 0 24 1 0 0 0 0 2 0 1.646215738958563 -.17467090552115214 2.7900279823166945 -.31098124268393185 .1388903707265854 -.2238087420821282 1 30 65 0 14 0 1 1 25 0 1 0 0 0 1 0 .6791480083209966 -.17467090552115214 -.3578288676205426 .18168217354185456 .1321992129087448 -.2238087420821282 4 30 1 0 10 1 0 0 26 0 0 0 1 0 1 0 1.7670992052882584 5.7156201862199225 -.3578288676205426 -.26092606163646775 1.4831353425979614 -.2238087420821282 5 30 52 1 16 1 0 0 27 0 0 0 1 0 3 0 1.8879826716179537 5.7156201862199225 -.3578288676205426 -.37322358705059144 .5248804092407227 -.2238087420821282 4 30 50 1 14 1 1 1 28 0 0 1 0 0 5 1 .8604732078155402 -.17467090552115214 -.3578288676205426 .2923209275729863 -.25364482402801514 -.2238087420821282 10 30 50 1 12 0 0 0 29 0 0 1 0 0 5 1 -1.1945457197892877 -.17467090552115214 -.3578288676205426 .9310766336112833 -.14429421722888947 -.2238087420821282 1 30 1 0 10 0 0 0 30 1 0 0 0 0 1 0 -1.164324853206864 -.17467090552115214 -.3578288676205426 -.1668134869043051 .9537391066551208 -.2238087420821282 4 30 50 1 14 0 1 1 31 0 1 0 0 0 1 0 .316497609331909 -.17467090552115214 -.3578288676205426 -1.0388126726317228 -.33852890133857727 -.2238087420821282 2 30 4 0 12 0 0 0 32 0 1 0 0 0 2 0 -2.3731595165038217 -.17467090552115214 -.3578288676205426 -1.0158000885323273 .30001211166381836 -.2238087420821282 6 30 85 1 14 1 0 0 33 0 0 0 1 0 3 0 1.6159948723761388 5.7156201862199225 -.3578288676205426 -.6680418446003231 -.22986406087875366 -.2238087420821282 12 30 25 0 10 0 1 1 34 1 0 0 0 0 1 0 -.015931923074754238 -.17467090552115214 2.7900279823166945 -.3605893836795129 -.030210819095373154 -.2238087420821282 6 30 30 1 14 0 1 1 35 1 0 0 0 0 4 0 .19561414300221366 -.17467090552115214 -.3578288676205426 -.29625386740325454 -.054053060710430145 -.2238087420821282 2 30 1 0 10 0 1 1 36 1 0 0 0 0 2 0 -.04615278965717807 -.17467090552115214 -.3578288676205426 .0974127954282769 -.416740357875824 -.2238087420821282 4 30 1 1 12 0 1 1 37 1 0 0 0 0 3 0 .46760194224402873 -.17467090552115214 -.3578288676205426 -.4155743122038819 -.335686594247818 -.2238087420821282 5 30 35 0 10 0 0 0 38 0 0 0 1 0 3 0 -.7412327210529289 5.7156201862199225 -.3578288676205426 . -.00035469839349389076 4.460739755981727 3 35 3 1 14 0 1 1 39 0 0 0 1 0 1 0 .7395897414858443 -.17467090552115214 -.3578288676205426 .2073853134297047 -.027304796501994133 -.2238087420821282 4 30 1 0 12 0 1 1 40 0 1 0 0 0 1 0 -.7714535876353528 -.17467090552115214 -.3578288676205426 .21471124880375708 -.23395533859729767 -.2238087420821282 3 30 3 0 12 0 1 1 41 0 0 0 1 0 1 0 1.6159948723761388 -.17467090552115214 2.7900279823166945 .21967625390380163 .5807830095291138 -.2238087420821282 5 30 5 0 14 0 1 1 42 0 0 0 0 1 3 0 -1.2549874529541358 -.17467090552115214 -.3578288676205426 -2.0620597440081014 .25282812118530273 -.2238087420821282 5 30 5 0 14 0 1 0 43 1 0 0 0 0 3 0 -.5599075215583849 -.17467090552115214 -.3578288676205426 -.26128395977324326 -.43430620431900024 -.2238087420821282 3 30 2 0 12 0 0 0 44 1 0 0 0 0 4 0 .6187062751561484 -.17467090552115214 -.3578288676205426 -.16187575656933087 -.24444033205509186 -.2238087420821282 10 30 30 1 12 0 1 1 45 0 0 0 0 1 1 0 -.25769885573414547 -.17467090552115214 -.3578288676205426 -1.8413749631574865 .0203559510409832 -.2238087420821282 1 30 65 0 12 0 1 1 46 0 0 1 0 0 5 1 -.10659452282202574 -.17467090552115214 -.3578288676205426 -1.7443014133197707 .17674283683300018 -.2238087420821282 5 30 35 0 14 1 0 1 47 1 0 0 0 0 3 0 -.650570121305657 -.17467090552115214 -.3578288676205426 . -.292697012424469 -.2238087420821282 3 30 35 0 12 0 0 0 48 1 0 0 0 0 3 0 -1.0132205202947442 -.17467090552115214 -.3578288676205426 .36018952378310093 .1786084771156311 -.2238087420821282 5 30 4 1 14 0 1 1 49 0 0 1 0 0 5 1 .46760194224402873 -.17467090552115214 -.3578288676205426 .6299302979461671 .009654278866946697 4.460739755981727 7 30 36 0 12 0 1 1 50 0 1 0 0 0 5 0 .5582645419913007 -.17467090552115214 -.3578288676205426 -.9192996413801727 -.3709001839160919 -.2238087420821282 8 30 50 0 14 1 1 1 51 0 1 0 0 0 1 0 .6791480083209966 -.17467090552115214 -.3578288676205426 -1.0516467800736213 .8933067321777344 -.2238087420821282 3 30 38 1 14 1 1 1 52 0 0 0 0 1 2 0 -.19725712256929778 -.17467090552115214 -.3578288676205426 1.6131483253910892 -.23106208443641663 -.2238087420821282 5 30 2 1 12 0 0 0 53 0 0 0 0 1 1 0 .0747306766725178 -.17467090552115214 -.3578288676205426 -.19094034494254644 -.2653968334197998 -.2238087420821282 1 30 35 0 12 0 1 0 54 0 0 1 0 0 4 1 .7395897414858443 -.17467090552115214 -.3578288676205426 . .058907583355903625 -.2238087420821282 9 30 40 0 14 0 0 0 55 0 0 1 0 0 3 1 .528043675408877 -.17467090552115214 -.3578288676205426 -1.251316354437607 -.08203176409006119 -.2238087420821282 3 30 5 1 12 1 0 0 56 0 0 1 0 0 5 1 .04450981009009397 -.17467090552115214 -.3578288676205426 -2.620993189115617 -.4887867569923401 -.2238087420821282 5 30 35 1 10 0 0 1 57 0 0 0 1 0 1 0 2.00886613794765 -.17467090552115214 -.3578288676205426 .2614884687564977 .33124205470085144 -.2238087420821282 13 30 50 1 14 0 1 0 58 0 0 1 0 0 3 1 .6187062751561484 -.17467090552115214 -.3578288676205426 1.3454771071824996 -.07964923977851868 -.2238087420821282 2 30 40 0 12 0 1 1 59 0 0 1 0 0 5 1 -.8318953208002005 -.17467090552115214 -.3578288676205426 .5116512835045026 -.2557803988456726 4.460739755981727 4 30 4 1 14 1 1 1 60 0 1 0 0 0 1 0 .3467184759143334 -.17467090552115214 -.3578288676205426 .010749225132069011 -.513462245464325 -.2238087420821282 4 30 3 1 14 0 0 0 61 0 1 0 0 0 3 0 -.43902405522868954 -.17467090552115214 -.3578288676205426 -.8343959586691686 .1515323519706726 -.2238087420821282 2 30 30 0 10 0 1 0 62 0 0 0 0 1 3 0 .8604732078155402 -.17467090552115214 2.7900279823166945 .261200420627829 -.24141129851341248 -.2238087420821282 3 30 30 1 14 0 1 0 63 0 1 0 0 0 1 0 .5884854085737246 -.17467090552115214 -.3578288676205426 -.7536147569128072 .0011115926317870617 -.2238087420821282 5 30 5 1 14 0 1 0 64 0 0 1 0 0 3 1 -.4692449218111134 -.17467090552115214 -.3578288676205426 .3072578528779839 .18833111226558685 -.2238087420821282 6 30 1 0 14 1 0 0 65 0 0 0 0 1 2 0 -.16703625598687394 -.17467090552115214 -.3578288676205426 . -.21167317032814026 -.2238087420821282 4 30 40 1 14 0 0 0 66 0 1 0 0 0 2 0 -.8318953208002005 -.17467090552115214 -.3578288676205426 -.8765850309465549 -.4903718829154968 -.2238087420821282 4 30 5 1 12 0 0 1 67 0 1 0 0 0 1 0 -.650570121305657 -.17467090552115214 -.3578288676205426 -1.0488773935617322 -.47122159600257874 -.2238087420821282 2 30 50 1 14 0 1 1 68 0 0 1 0 0 5 1 .46760194224402873 -.17467090552115214 -.3578288676205426 .880124711507363 .5999096632003784 -.2238087420821282 4 30 1 1 12 0 1 1 69 0 0 0 0 1 1 0 .890694074397964 -.17467090552115214 -.3578288676205426 . -.3696211874485016 -.2238087420821282 6 30 40 1 10 0 1 0 70 0 0 0 1 0 1 0 -.43902405522868954 -.17467090552115214 2.7900279823166945 -.416889488070806 -.23398828506469727 -.2238087420821282 1 30 31 1 14 1 1 1 71 0 0 0 1 0 1 0 -1.7385213182729187 -.17467090552115214 -.3578288676205426 . -.5392345786094666 -.2238087420821282 16 30 95 0 14 1 0 0 72 1 0 0 0 0 1 0 -1.2549874529541358 -.17467090552115214 -.3578288676205426 -.20078254370387266 -.003632044419646263 -.2238087420821282 6 30 38 1 10 0 1 1 73 1 0 0 0 0 1 0 .10495154325494163 -.17467090552115214 2.7900279823166945 -.16739091363798753 .00923280231654644 -.2238087420821282 7 30 42 0 10 0 1 1 74 0 0 0 1 0 1 0 -.37858232206384135 -.17467090552115214 2.7900279823166945 1.3151222893738266 .42960280179977417 -.2238087420821282 5 30 76 0 12 0 0 1 75 1 0 0 0 0 2 0 .10495154325494163 -.17467090552115214 -.3578288676205426 -.49060619305488595 .11721663922071457 -.2238087420821282 4 30 4 0 12 0 1 1 76 0 0 0 0 1 1 0 -1.1945457197892877 -.17467090552115214 -.3578288676205426 . -.44221267104148865 -.2238087420821282 4 30 3 1 12 0 0 0 77 0 1 0 0 0 3 0 .1653932764197893 -.17467090552115214 -.3578288676205426 -1.0794287892503627 -.27576348185539246 -.2238087420821282 5 30 47 0 12 0 0 0 78 0 0 0 0 1 2 0 .6187062751561484 -.17467090552115214 -.3578288676205426 .1993861570251378 -.44715332984924316 -.2238087420821282 4 30 45 1 14 0 1 1 79 1 0 0 0 0 3 0 .014288943507669597 -.17467090552115214 -.3578288676205426 .6140776722967988 -.12049747258424759 -.2238087420821282 9 30 75 1 14 1 0 0 80 0 0 0 1 0 1 0 .19561414300221366 -.17467090552115214 -.3578288676205426 .2346018701598676 .08459015935659409 -.2238087420821282 4 30 32 0 10 1 1 1 81 0 0 1 0 0 2 1 1.0417984073100837 -.17467090552115214 -.3578288676205426 -.9620688013439311 .43692710995674133 -.2238087420821282 8 30 40 0 14 0 1 0 82 0 0 0 1 0 1 0 -1.2247665863717119 -.17467090552115214 2.7900279823166945 -.4881158739563375 .14259998500347137 -.2238087420821282 3 30 2 1 10 0 0 0 83 0 0 0 0 1 1 0 -.8923370539650487 -.17467090552115214 -.3578288676205426 -.44843940625627665 -.34136369824409485 -.2238087420821282 7 30 40 0 14 0 1 1 84 0 0 0 1 0 3 0 -.2879197223165698 -.17467090552115214 -.3578288676205426 -1.6741124663641676 .3123893439769745 -.2238087420821282 5 30 30 0 12 0 0 0 85 0 0 0 1 0 3 0 .28627674274948517 5.7156201862199225 -.3578288676205426 -1.3612921986298971 -.24287857115268707 -.2238087420821282 7 30 35 1 14 0 0 0 86 1 0 0 0 0 1 0 .04450981009009397 -.17467090552115214 -.3578288676205426 . -.3046002686023712 -.2238087420821282 5 30 53 0 14 0 0 0 87 0 0 0 0 1 2 0 -.7110118544705045 -.17467090552115214 -.3578288676205426 .22056734043579188 -.11875037848949432 -.2238087420821282 6 30 50 1 14 1 1 1 88 0 0 0 0 1 1 0 .8302523412331163 -.17467090552115214 -.3578288676205426 -.568260442781669 .40828466415405273 -.2238087420821282 14 30 23 1 14 1 1 1 89 1 0 0 0 0 2 0 -.16703625598687394 -.17467090552115214 -.3578288676205426 .7923315667943434 .03317645192146301 -.2238087420821282 2 30 5 0 10 0 1 0 90 1 0 0 0 0 2 0 -.22747798915172163 -.17467090552115214 -.3578288676205426 . -.2622317373752594 -.2238087420821282 5 30 50 1 14 1 0 0 91 1 0 0 0 0 1 0 -.04615278965717807 -.17467090552115214 -.3578288676205426 .027134041319393423 .17080353200435638 -.2238087420821282 3 30 1 0 14 0 0 0 92 0 0 0 0 1 1 0 .6791480083209966 -.17467090552115214 -.3578288676205426 .8440870966105775 -.08979001641273499 -.2238087420821282 5 30 45 1 14 0 1 1 93 0 0 0 0 1 2 0 -.6203492547232331 -.17467090552115214 2.7900279823166945 .03007073523165263 .5065498352050781 -.2238087420821282 4 30 4 1 14 0 0 0 94 0 0 0 0 1 2 0 -.6203492547232331 -.17467090552115214 -.3578288676205426 1.0573275296924445 -.25364482402801514 -.2238087420821282 1 30 2 0 10 0 1 1 95 0 0 0 1 0 1 0 .7093688749034205 -.17467090552115214 2.7900279823166945 . .3561297059059143 -.2238087420821282 8 30 40 1 14 0 1 1 96 0 0 0 0 1 1 0 -.2879197223165698 -.17467090552115214 -.3578288676205426 -.6081657524130509 -.11607611179351807 -.2238087420821282 2 30 40 0 10 1 1 1 97 0 0 0 1 0 1 0 1.2533444733870516 -.17467090552115214 -.3578288676205426 1.7729807770363684 -.3061423897743225 4.460739755981727 5 30 32 0 12 0 1 1 98 0 0 0 1 0 1 0 .6791480083209966 -.17467090552115214 2.7900279823166945 . -.14963358640670776 -.2238087420821282 6 30 5 0 12 1 1 1 99 1 0 0 0 0 3 0 -.16703625598687394 -.17467090552115214 -.3578288676205426 -.34600503460591125 .3695245385169983 -.2238087420821282 6 30 5 0 12 0 0 0 100 end
Comment