Hi,
I have used two part model for my healthcare cost data and used the following code
"twopm total_cost age i.age_grp i.sex i.comorb_cat ib2.health_insurance i.wealth_tertile i.facility1 i.level1 i.treatment1 i.flu1 ib2.sample_type_final ib2.Site, ///
firstpart(logit, nolog) secondpart(glm, family(gamma) link(log) nolog)"
but getting different number of observations in the first part, i dont understand why
I have used two part model for my healthcare cost data and used the following code
"twopm total_cost age i.age_grp i.sex i.comorb_cat ib2.health_insurance i.wealth_tertile i.facility1 i.level1 i.treatment1 i.flu1 ib2.sample_type_final ib2.Site, ///
firstpart(logit, nolog) secondpart(glm, family(gamma) link(log) nolog)"
but getting different number of observations in the first part, i dont understand why
Code:
. ta total_cost if total_cost==0 total_cost | Freq. Percent Cum. ------------+----------------------------------- 0 | 575 100.00 100.00 ------------+----------------------------------- Total | 575 100.00 . sum total_cost Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- total_cost | 3,729 974.1922 1202.411 0 19366.55 twopm total_cost age i.age_grp i.sex i.comorb_cat ib2.health_insurance i.wealth_tertile i.facility1 i.level1 i.treatment1 i.flu1 > ib2.sample_type_final ib2.Site, /// > firstpart(logit, nolog) secondpart(glm, family(gamma) link(log) nolog) Fitting logit regression for first part: note: 2.level1 != 0 predicts success perfectly 2.level1 dropped and 117 obs not used note: 3.level1 != 0 predicts success perfectly 3.level1 dropped and 53 obs not used note: 3.treatment1 != 0 predicts success perfectly 3.treatment1 dropped and 30 obs not used Fitting glm regression for second part: Two-part model ------------------------------------------------------------------------------ Log pseudolikelihood = -26187.565 Number of obs = 3529 Part 1: logit ------------------------------------------------------------------------------ Number of obs = 3529 LR chi2(17) = 941.09 Prob > chi2 = 0.0000 Log likelihood = -1098.1144 Pseudo R2 = 0.3000 Part 2: glm ------------------------------------------------------------------------------ Number of obs = 3154 Deviance = 2317.199533 (1/df) Deviance = .7396104 Pearson = 2677.580772 (1/df) Pearson = .854638 Variance function: V(u) = u^2 [Gamma] Link function : g(u) = ln(u) [Log] AIC = 15.92292 Log likelihood = -25089.45093 BIC = -22923.59 ----------------------------------------------------------------------------------- total_cost | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------------------+---------------------------------------------------------------- logit | age | -.0057328 .0036571 -1.57 0.117 -.0129006 .0014349 | age_grp | 65-69 | -.0207899 .1372475 -0.15 0.880 -.28979 .2482103 70 and above | .0716346 .1354971 0.53 0.597 -.1939347 .337204 | sex | M | -.2404908 .1097937 -2.19 0.028 -.4556825 -.025299 | comorb_cat | One | .1405211 .1296914 1.08 0.279 -.1136694 .3947116 More than one | .2788304 .1397698 1.99 0.046 .0048866 .5527743 | health_insurance | Yes | -.1972704 .1624971 -1.21 0.225 -.5157588 .1212181 | wealth_tertile | 2 | .4299188 .1629887 2.64 0.008 .1104669 .7493707 3 | .2415955 .1526641 1.58 0.114 -.0576207 .5408117 | facility1 | Private | 3.134358 .6235388 5.03 0.000 1.912245 4.356472 | level1 | Primary | .1779982 .2299553 0.77 0.439 -.2727059 .6287023 | treatment1 | Ambulatory | 3.532288 .7454025 4.74 0.000 2.071326 4.99325 | flu1 | flu/RSV | .727569 .2962698 2.46 0.014 .1468909 1.308247 | sample_type_final | ALRI | .8066968 .1361144 5.93 0.000 .5399174 1.073476 | Site | Chennai | 1.463906 .3477832 4.21 0.000 .7822639 2.145549 Kolkata | 2.587106 .3871506 6.68 0.000 1.828305 3.345907 Pune | 1.377833 .3393943 4.06 0.000 .7126324 2.043033 | _cons | -.1149095 .1850908 -0.62 0.535 -.4776808 .2478617 ------------------+---------------------------------------------------------------- glm | age | -.0031744 .0010904 -2.91 0.004 -.0053116 -.0010372 | age_grp | 65-69 | -.0194222 .0405161 -0.48 0.632 -.0988323 .0599878 70 and above | .1175043 .0417505 2.81 0.005 .0356748 .1993339 | sex | M | .0591213 .0345553 1.71 0.087 -.0086058 .1268483 | comorb_cat | One | .1126224 .0449867 2.50 0.012 .02445 .2007947 More than one | .2371152 .0446565 5.31 0.000 .1495901 .3246403 | health_insurance | Yes | -.0276218 .0589608 -0.47 0.639 -.1431829 .0879393 | wealth_tertile | 2 | -.0503335 .0443209 -1.14 0.256 -.1372007 .0365338 3 | -.026519 .0531616 -0.50 0.618 -.1307139 .0776758 | facility1 | Private | .2387775 .054445 4.39 0.000 .1320672 .3454877 | level1 | Primary | -.2222971 .0740025 -3.00 0.003 -.3673394 -.0772548 Secondary | -.1561688 .1202328 -1.30 0.194 -.3918207 .0794831 Tertiary | .1886037 .1490505 1.27 0.206 -.1035298 .4807372 | treatment1 | Ambulatory | .610182 .0699323 8.73 0.000 .4731172 .7472468 Emergency/IPD | 1.130927 .1708076 6.62 0.000 .7961499 1.465703 | flu1 | flu/RSV | .1072076 .0673063 1.59 0.111 -.0247104 .2391255 | sample_type_final | ALRI | .4263658 .037677 11.32 0.000 .3525203 .5002113 | Site | Chennai | .217353 .079374 2.74 0.006 .0617827 .3729232 Kolkata | -.237404 .0842827 -2.82 0.005 -.4025952 -.0722129 Pune | .0250936 .0820798 0.31 0.760 -.1357799 .1859672 | _cons | 6.444186 .063974 100.73 0.000 6.318799 6.569573 ----------------------------------------------------------------------------------- . end of do-file
Comment