Hi everyone,
I am working with a 4-wave panel dataset, N=4,500. The dataset looks like this:
I want to estimate a Cross lagged panel model with fixed effects.
Using the xtdpdml command, stata gives me the wanted coefficients as output.
However, when transfering the estimation to Mplus (using the mplus option in xtdpdml), my model does not seem to be identified and therefore does not provide the std. dev. and p-values in the output.
I already tried different options (e.g., only estimating the IV and DV without controls, which works perfectly in both programms).
Does anybody have an idea why the model does not converge/ can't be identified in mplus, but in stata?
Best,
Lisa
I am working with a 4-wave panel dataset, N=4,500. The dataset looks like this:
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float(sum_helpfromchildren srh) byte alter float spouse byte anzkind 0 5 59 1 0 0 4 62 1 0 0 4 65 1 0 0 4 73 0 1 0 3 76 0 1 0 3 79 0 1 0 4 59 0 2 0 4 65 0 2 0 4 68 0 2 0 3 68 0 3 0 4 71 0 3 1 4 74 0 3 0 4 77 0 3 0 4 83 1 2 0 3 86 1 2 0 2 89 1 2 0 4 74 1 1 0 3 77 1 1 0 3 74 1 0 0 3 77 1 0 0 3 80 1 0 0 2 89 1 1 0 1 92 1 4 1 4 95 1 1 0 3 97 1 1 1 1 75 1 3 0 1 78 1 3 0 2 88 0 4 0 2 91 0 4 1 2 84 0 2 1 3 87 0 1 1 3 90 0 2 1 3 93 0 2 0 3 86 0 1 1 3 89 0 1 1 2 92 0 1 0 4 90 0 2 0 4 93 0 2 1 2 85 1 2 0 3 88 1 2 1 1 91 1 2 0 4 82 1 3 0 3 85 1 3 0 3 88 1 3 0 5 91 0 0 0 4 95 0 0 0 4 97 0 0 0 3 84 0 2 0 3 87 0 2 0 3 90 0 2 0 3 93 0 1 0 4 83 1 2 0 3 86 1 1 0 3 70 1 3 0 4 73 1 3 1 4 76 1 3 0 4 84 0 0 0 3 87 0 0 0 3 90 0 0 0 4 71 0 1 0 2 77 0 1 0 1 92 0 2 0 1 95 0 2 0 3 87 0 2 1 4 90 0 2 1 4 93 0 2 0 2 79 1 2 0 2 82 0 2 0 4 74 1 2 0 4 77 1 2 0 4 80 1 2 0 4 76 1 3 0 3 79 1 3 1 3 82 1 3 1 3 93 0 4 1 3 95 0 4 1 4 67 1 1 0 4 70 1 1 0 3 73 1 1 0 4 76 1 1 0 4 70 1 1 1 3 73 1 1 0 3 76 1 1 0 3 77 0 2 1 4 80 0 2 .a 3 83 0 2 1 2 86 0 2 0 3 78 0 3 0 3 81 0 3 0 2 84 0 3 0 3 88 1 3 0 1 91 1 3 0 4 79 1 5 1 4 82 1 5 0 4 70 1 5 0 4 76 1 5 0 4 79 1 5 0 3 88 0 0 0 4 91 0 0 0 4 86 0 2 end label values alter ALTER_17 label def ALTER_17 97 "97. 96-97", modify label values anzkind ANZKIND label def ANZKIND 0 "0. keine", modify
I want to estimate a Cross lagged panel model with fixed effects.
Using the xtdpdml command, stata gives me the wanted coefficients as output.
Code:
. xtdpdml sum_helpfromchildren alter spouse anzkind, pre(srh L.srh) errorinv title(ML-SE > M of instrumental help on self-rated health) details gof decimals(3) showcmd fiml The generated sem command is sem (sum_helpfromchildren2 <- sum_helpfromchildren1@b1 alter2@b2 spouse2@b3 anzkind2@b4 srh2@b5 srh1@b6 Alpha@1 E2@1 ) (sum_helpfromchildren3 <- sum_helpfromchildren2@b1 alter3@b2 spouse3@b3 anzkind3@b4 srh3@b5 srh2@b6 Alpha@1 E3@1 ) (sum_helpfromchildren4 <- sum_helpfromchildren3@b1 alter4@b2 spouse4@b3 anzkind4@b4 srh4@b5 srh3@b6 Alpha@1 ), var(e.sum_helpfromchildren2@0 e.sum_helpfromchildren3@0) var(Alpha) cov(Alpha*(E2 E3)@0 _OEx*(E2 E3)@0 E2*(E3)@0 srh3*(E2) srh4*(E2 E3) srh3*(E2)) cformat(%9.3f) var(E2@v1 E3@v1 e.sum_helpfromchildren4@v1) iterate(250) technique(nr 25 bhhh 25) noxconditional method(mlmv) (62 observations containing extended missing values excluded) Endogenous variables Observed: sum_helpfromchildren2 sum_helpfromchildren3 sum_helpfromchildren4 Exogenous variables Observed: sum_helpfromchildren1 alter2 spouse2 anzkind2 srh2 srh1 alter3 spouse3 anzkind3 srh3 alter4 spouse4 anzkind4 srh4 Latent: Alpha E2 E3 Fitting saturated model: Iteration 0: log likelihood = -46981.921 Iteration 1: log likelihood = -44926.541 Iteration 2: log likelihood = -44272.425 Iteration 3: log likelihood = -44151.991 Iteration 4: log likelihood = -44144.762 Iteration 5: log likelihood = -44144.732 Iteration 6: log likelihood = -44144.732 Fitting baseline model: Iteration 0: log likelihood = -44678.978 Iteration 1: log likelihood = -44677.583 Iteration 2: log likelihood = -44677.582 Fitting conditional model: (setting technique to nr) Iteration 0: log likelihood = -53044.686 (not concave) Iteration 1: log likelihood = -50285.277 (not concave) Iteration 2: log likelihood = -47735.654 (not concave) Iteration 3: log likelihood = -45591.374 (not concave) Iteration 4: log likelihood = -44681.152 (not concave) Iteration 5: log likelihood = -44240.888 Iteration 6: log likelihood = -44162.472 Iteration 7: log likelihood = -44158.498 Iteration 8: log likelihood = -44158.484 Iteration 9: log likelihood = -44158.312 Iteration 10: log likelihood = -44158.309 Iteration 11: log likelihood = -44158.308 Iteration 12: log likelihood = -44158.308 Iteration 13: log likelihood = -44158.308 Fitting target model: (setting technique to nr) Iteration 0: log likelihood = -44158.308 Iteration 1: log likelihood = -44158.291 Iteration 2: log likelihood = -44158.291 Structural equation model Number of obs = 4,479 Estimation method: mlmv Log likelihood = -44158.291 ( 1) - [sum_helpfromchildren2]sum_helpfromchildren1 + [sum_helpfromchildren3]sum_helpfromchildren2 = 0 ( 2) - [sum_helpfromchildren2]sum_helpfromchildren1 + [sum_helpfromchildren4]sum_helpfromchildren3 = 0 ( 3) [sum_helpfromchildren2]alter2 - [sum_helpfromchildren4]alter4 = 0 ( 4) [sum_helpfromchildren2]spouse2 - [sum_helpfromchildren4]spouse4 = 0 ( 5) [sum_helpfromchildren2]anzkind2 - [sum_helpfromchildren4]anzkind4 = 0 ( 6) [sum_helpfromchildren2]srh2 - [sum_helpfromchildren4]srh4 = 0 ( 7) [sum_helpfromchildren2]srh1 - [sum_helpfromchildren4]srh3 = 0 ( 8) [sum_helpfromchildren2]Alpha = 1 ( 9) [sum_helpfromchildren2]E2 = 1 (10) [sum_helpfromchildren3]srh2 - [sum_helpfromchildren4]srh3 = 0 (11) [sum_helpfromchildren3]alter3 - [sum_helpfromchildren4]alter4 = 0 (12) [sum_helpfromchildren3]spouse3 - [sum_helpfromchildren4]spouse4 = 0 (13) [sum_helpfromchildren3]anzkind3 - [sum_helpfromchildren4]anzkind4 = 0 (14) [sum_helpfromchildren3]srh3 - [sum_helpfromchildren4]srh4 = 0 (15) [sum_helpfromchildren3]Alpha = 1 (16) [sum_helpfromchildren3]E3 = 1 (17) [sum_helpfromchildren4]Alpha = 1 (18) [var(e.sum_helpfromchildren2)]_cons = 0 (19) [var(e.sum_helpfromchildren3)]_cons = 0 (20) [var(e.sum_helpfromchildren4)]_cons - [var(E3)]_cons = 0 (21) [var(E2)]_cons - [var(E3)]_cons = 0 ---------------------------------------------------------------------------------------------------- | OIM | Coefficient std. err. z P>|z| [95% conf. interval] -----------------------------------+---------------------------------------------------------------- Structural | sum_helpfromchildren2 | sum_helpfromchildren1 | 0.078 0.021 3.82 0.000 0.038 0.119 alter2 | 0.001 0.016 0.06 0.951 -0.030 0.032 spouse2 | 0.000 0.023 0.02 0.984 -0.045 0.046 anzkind2 | 0.021 0.015 1.37 0.170 -0.009 0.052 srh2 | -0.004 0.015 -0.26 0.797 -0.034 0.026 srh1 | -0.001 0.010 -0.07 0.943 -0.020 0.019 Alpha | 1.000 0.000 1.9e+16 0.000 1.000 1.000 E2 | 1.000 0.000 4.2e+15 0.000 1.000 1.000 _cons | 0.010 1.063 0.01 0.992 -2.074 2.094 ---------------------------------+---------------------------------------------------------------- sum_helpfromchildren3 | sum_helpfromchildren2 | 0.078 0.021 3.82 0.000 0.038 0.119 srh2 | -0.001 0.010 -0.07 0.943 -0.020 0.019 alter3 | 0.001 0.016 0.06 0.951 -0.030 0.032 spouse3 | 0.000 0.023 0.02 0.984 -0.045 0.046 anzkind3 | 0.021 0.015 1.37 0.170 -0.009 0.052 srh3 | -0.004 0.015 -0.26 0.797 -0.034 0.026 Alpha | 1.000 (constrained) E3 | 1.000 (constrained) _cons | 0.019 1.111 0.02 0.987 -2.159 2.197 ---------------------------------+---------------------------------------------------------------- sum_helpfromchildren4 | sum_helpfromchildren3 | 0.078 0.021 3.82 0.000 0.038 0.119 srh3 | -0.001 0.010 -0.07 0.943 -0.020 0.019 alter4 | 0.001 0.016 0.06 0.951 -0.030 0.032 spouse4 | 0.000 0.023 0.02 0.984 -0.045 0.046 anzkind4 | 0.021 0.015 1.37 0.170 -0.009 0.052 srh4 | -0.004 0.015 -0.26 0.797 -0.034 0.026 Alpha | 1.000 (constrained) _cons | 0.021 1.159 0.02 0.986 -2.251 2.292 -----------------------------------+---------------------------------------------------------------- mean(sum_helpfromchildren1)| 0.078 0.004 18.36 0.000 0.069 0.086 mean(alter2)| 66.066 0.155 426.37 0.000 65.763 66.370 mean(spouse2)| 0.746 0.007 113.39 0.000 0.733 0.758 mean(anzkind2)| 2.021 0.017 119.25 0.000 1.987 2.054 mean(srh2)| 3.482 0.013 264.47 0.000 3.457 3.508 mean(srh1)| 3.571 0.013 279.59 0.000 3.546 3.596 mean(alter3)| 69.068 0.155 445.80 0.000 68.764 69.372 mean(spouse3)| 0.718 0.007 104.78 0.000 0.705 0.732 mean(anzkind3)| 2.019 0.017 119.38 0.000 1.986 2.052 mean(srh3)| 3.440 0.013 258.61 0.000 3.414 3.466 mean(alter4)| 72.060 0.155 464.13 0.000 71.756 72.365 mean(spouse4)| 0.680 0.008 89.04 0.000 0.665 0.695 mean(anzkind4)| 2.009 0.017 116.86 0.000 1.975 2.043 mean(srh4)| 3.380 0.015 230.17 0.000 3.351 3.409 -----------------------------------+---------------------------------------------------------------- var(e.sum_helpfromchildren2)| 0.000 (constrained) var(e.sum_helpfromchildren3)| 0.000 (constrained) var(e.sum_helpfromchildren4)| 0.083 0.002 0.079 0.087 var(sum_helpfromchildren1)| 0.072 0.002 0.069 0.075 var(alter2)| 107.538 2.272 103.175 112.086 var(spouse2)| 0.189 0.004 0.181 0.197 var(anzkind2)| 1.270 0.027 1.218 1.325 var(srh2)| 0.714 0.016 0.683 0.746 var(srh1)| 0.675 0.015 0.646 0.705 var(alter3)| 107.505 2.272 103.143 112.051 var(spouse3)| 0.202 0.004 0.193 0.211 var(anzkind3)| 1.252 0.027 1.200 1.307 var(srh3)| 0.677 0.016 0.647 0.710 var(alter4)| 107.877 2.282 103.495 112.444 var(spouse4)| 0.218 0.005 0.208 0.229 var(anzkind4)| 1.241 0.028 1.187 1.298 var(srh4)| 0.674 0.018 0.639 0.711 var(Alpha)| 0.015 0.009 0.005 0.049 var(E2)| 0.083 0.002 0.079 0.087 var(E3)| 0.083 0.002 0.079 0.087 -----------------------------------+---------------------------------------------------------------- cov(sum_helpfromchildren1,alter2)| 0.295 0.044 6.74 0.000 0.209 0.381 cov(sum_helpfromchildren1,spouse2)| -0.007 0.002 -3.81 0.000 -0.011 -0.003 cov(sum_helpfromchildren1,anzkind2)| 0.030 0.005 6.30 0.000 0.021 0.040 cov(sum_helpfromchildren1,srh2)| -0.018 0.004 -4.77 0.000 -0.025 -0.010 cov(sum_helpfromchildren1,srh1)| -0.024 0.004 -6.74 0.000 -0.031 -0.017 cov(sum_helpfromchildren1,alter3)| 0.295 0.044 6.75 0.000 0.210 0.381 cov(sum_helpfromchildren1,spouse3)| -0.008 0.002 -3.97 0.000 -0.012 -0.004 cov(sum_helpfromchildren1,anzkind3)| 0.030 0.005 6.20 0.000 0.020 0.039 cov(sum_helpfromchildren1,srh3)| -0.017 0.004 -4.38 0.000 -0.024 -0.009 cov(sum_helpfromchildren1,alter4)| 0.293 0.044 6.68 0.000 0.207 0.379 cov(sum_helpfromchildren1,spouse4)| -0.008 0.002 -3.73 0.000 -0.013 -0.004 cov(sum_helpfromchildren1,anzkind4)| 0.028 0.005 5.60 0.000 0.018 0.037 cov(sum_helpfromchildren1,srh4)| -0.018 0.004 -4.15 0.000 -0.026 -0.009 cov(sum_helpfromchildren1,Alpha)| 0.015 0.005 2.99 0.003 0.005 0.025 cov(alter2,spouse2)| -0.584 0.069 -8.49 0.000 -0.719 -0.449 cov(alter2,anzkind2)| 0.796 0.176 4.52 0.000 0.451 1.141 cov(alter2,srh2)| -1.292 0.138 -9.35 0.000 -1.563 -1.021 cov(alter2,srh1)| -1.040 0.133 -7.85 0.000 -1.300 -0.780 cov(alter2,alter3)| 107.512 2.272 47.32 0.000 103.059 111.965 cov(alter2,spouse3)| -0.599 0.072 -8.30 0.000 -0.740 -0.457 cov(alter2,anzkind3)| 0.734 0.176 4.16 0.000 0.388 1.080 cov(alter2,srh3)| -1.258 0.142 -8.84 0.000 -1.537 -0.979 cov(alter2,alter4)| 107.640 2.276 47.29 0.000 103.179 112.101 cov(alter2,spouse4)| -0.870 0.083 -10.53 0.000 -1.032 -0.708 cov(alter2,anzkind4)| 0.618 0.181 3.42 0.001 0.264 0.972 cov(alter2,srh4)| -1.595 0.162 -9.82 0.000 -1.913 -1.276 cov(alter2,Alpha)| 0.272 1.728 0.16 0.875 -3.114 3.658 cov(spouse2,anzkind2)| 0.036 0.007 4.78 0.000 0.021 0.050 cov(spouse2,srh2)| 0.022 0.006 3.73 0.000 0.010 0.033 cov(spouse2,srh1)| 0.020 0.006 3.61 0.000 0.009 0.031 cov(spouse2,alter3)| -0.583 0.069 -8.48 0.000 -0.718 -0.449 cov(spouse2,spouse3)| 0.179 0.004 44.40 0.000 0.171 0.187 cov(spouse2,anzkind3)| 0.031 0.007 4.17 0.000 0.017 0.046 cov(spouse2,srh3)| 0.020 0.006 3.36 0.001 0.008 0.031 cov(spouse2,alter4)| -0.583 0.069 -8.46 0.000 -0.718 -0.448 cov(spouse2,spouse4)| 0.162 0.004 38.93 0.000 0.154 0.170 cov(spouse2,anzkind4)| 0.035 0.008 4.54 0.000 0.020 0.050 cov(spouse2,srh4)| 0.015 0.007 2.22 0.026 0.002 0.028 cov(spouse2,Alpha)| -0.010 0.010 -0.92 0.359 -0.030 0.011 cov(anzkind2,srh2)| -0.002 0.015 -0.12 0.908 -0.031 0.028 cov(anzkind2,srh1)| 0.005 0.014 0.36 0.722 -0.023 0.033 cov(anzkind2,alter3)| 0.790 0.176 4.49 0.000 0.445 1.136 cov(anzkind2,spouse3)| 0.045 0.008 5.76 0.000 0.030 0.061 cov(anzkind2,anzkind3)| 1.206 0.026 45.80 0.000 1.154 1.257 cov(anzkind2,srh3)| -0.003 0.015 -0.18 0.857 -0.033 0.028 cov(anzkind2,alter4)| 0.787 0.177 4.46 0.000 0.441 1.133 cov(anzkind2,spouse4)| 0.043 0.009 4.92 0.000 0.026 0.061 cov(anzkind2,anzkind4)| 1.181 0.026 44.81 0.000 1.130 1.233 cov(anzkind2,srh4)| -0.012 0.017 -0.70 0.483 -0.046 0.022 cov(anzkind2,Alpha)| 0.010 0.023 0.42 0.673 -0.036 0.055 cov(srh2,srh1)| 0.381 0.013 30.15 0.000 0.356 0.406 cov(srh2,alter3)| -1.289 0.138 -9.33 0.000 -1.560 -1.018 cov(srh2,spouse3)| 0.026 0.006 4.29 0.000 0.014 0.038 cov(srh2,anzkind3)| -0.001 0.015 -0.06 0.949 -0.031 0.029 cov(srh2,srh3)| 0.400 0.013 29.82 0.000 0.374 0.427 cov(srh2,alter4)| -1.302 0.139 -9.38 0.000 -1.574 -1.030 cov(srh2,spouse4)| 0.026 0.007 3.78 0.000 0.013 0.040 cov(srh2,anzkind4)| 0.007 0.015 0.48 0.633 -0.023 0.037 cov(srh2,srh4)| 0.368 0.014 25.47 0.000 0.339 0.396 cov(srh2,Alpha)| -0.024 0.024 -1.00 0.317 -0.072 0.023 cov(srh1,alter3)| -1.037 0.133 -7.82 0.000 -1.296 -0.777 cov(srh1,spouse3)| 0.023 0.006 3.90 0.000 0.011 0.035 cov(srh1,anzkind3)| 0.008 0.014 0.59 0.556 -0.020 0.037 cov(srh1,srh3)| 0.338 0.013 27.00 0.000 0.313 0.362 cov(srh1,alter4)| -1.053 0.133 -7.93 0.000 -1.313 -0.793 cov(srh1,spouse4)| 0.021 0.007 3.25 0.001 0.009 0.034 cov(srh1,anzkind4)| 0.006 0.015 0.38 0.701 -0.023 0.035 cov(srh1,srh4)| 0.327 0.014 24.03 0.000 0.300 0.353 cov(srh1,Alpha)| -0.021 0.020 -1.05 0.292 -0.059 0.018 cov(alter3,spouse3)| -0.598 0.072 -8.29 0.000 -0.740 -0.457 cov(alter3,anzkind3)| 0.728 0.176 4.13 0.000 0.383 1.074 cov(alter3,srh3)| -1.256 0.142 -8.83 0.000 -1.535 -0.977 cov(alter3,alter4)| 107.591 2.275 47.29 0.000 103.132 112.051 cov(alter3,spouse4)| -0.870 0.083 -10.53 0.000 -1.032 -0.708 cov(alter3,anzkind4)| 0.613 0.181 3.39 0.001 0.259 0.967 cov(alter3,srh4)| -1.595 0.162 -9.82 0.000 -1.913 -1.276 cov(alter3,Alpha)| 0.272 1.727 0.16 0.875 -3.113 3.657 cov(spouse3,anzkind3)| 0.041 0.008 5.20 0.000 0.025 0.056 cov(spouse3,srh3)| 0.025 0.006 4.04 0.000 0.013 0.036 cov(spouse3,alter4)| -0.599 0.072 -8.29 0.000 -0.741 -0.457 cov(spouse3,spouse4)| 0.183 0.004 40.61 0.000 0.174 0.192 cov(spouse3,anzkind4)| 0.046 0.008 5.72 0.000 0.030 0.061 cov(spouse3,srh4)| 0.018 0.007 2.73 0.006 0.005 0.032 cov(spouse3,Alpha)| -0.013 0.011 -1.20 0.232 -0.034 0.008 cov(anzkind3,srh3)| -0.007 0.015 -0.46 0.643 -0.037 0.023 cov(anzkind3,alter4)| 0.726 0.177 4.10 0.000 0.379 1.072 cov(anzkind3,spouse4)| 0.039 0.009 4.49 0.000 0.022 0.057 cov(anzkind3,anzkind4)| 1.189 0.027 44.62 0.000 1.137 1.242 cov(anzkind3,srh4)| -0.007 0.017 -0.42 0.671 -0.041 0.026 cov(anzkind3,Alpha)| 0.011 0.023 0.50 0.620 -0.033 0.056 cov(srh3,alter4)| -1.262 0.143 -8.85 0.000 -1.541 -0.982 cov(srh3,spouse4)| 0.024 0.007 3.62 0.000 0.011 0.038 cov(srh3,anzkind4)| -0.008 0.016 -0.52 0.602 -0.039 0.022 cov(srh3,srh4)| 0.401 0.014 27.82 0.000 0.373 0.429 cov(srh3,Alpha)| -0.025 0.025 -1.03 0.302 -0.074 0.023 cov(srh3,E2)| 0.003 0.007 0.47 0.637 -0.011 0.018 cov(alter4,spouse4)| -0.870 0.083 -10.51 0.000 -1.032 -0.708 cov(alter4,anzkind4)| 0.610 0.181 3.37 0.001 0.255 0.964 cov(alter4,srh4)| -1.604 0.163 -9.85 0.000 -1.923 -1.285 cov(alter4,Alpha)| 0.273 1.730 0.16 0.874 -3.117 3.664 cov(spouse4,anzkind4)| 0.048 0.009 5.43 0.000 0.031 0.065 cov(spouse4,srh4)| 0.019 0.007 2.61 0.009 0.005 0.033 cov(spouse4,Alpha)| -0.016 0.015 -1.06 0.290 -0.045 0.013 cov(anzkind4,srh4)| -0.006 0.017 -0.37 0.714 -0.040 0.027 cov(anzkind4,Alpha)| 0.012 0.022 0.58 0.564 -0.030 0.055 cov(srh4,Alpha)| -0.024 0.030 -0.81 0.417 -0.083 0.034 cov(srh4,E2)| 0.002 0.010 0.20 0.844 -0.017 0.021 cov(srh4,E3)| 0.006 0.007 0.74 0.459 -0.009 0.020 ---------------------------------------------------------------------------------------------------- LR test of model vs. saturated: chi2(23) = 27.12 Prob > chi2 = 0.2510 Highlights: ML-SEM of instrumental help on self-rated health -------------------------------------------------------------------------------------- | OIM sum_helpfromchildren | Coefficient std. err. z P>|z| [95% conf. interval] ---------------------+---------------------------------------------------------------- sum_helpfromchildren | sum_helpfromchildren | L1. | 0.078 0.021 3.82 0.000 0.038 0.119 | alter | 0.001 0.016 0.06 0.951 -0.030 0.032 spouse | 0.000 0.023 0.02 0.984 -0.045 0.046 anzkind | 0.021 0.015 1.37 0.170 -0.009 0.052 | srh | --. | -0.004 0.015 -0.26 0.797 -0.034 0.026 L1. | -0.001 0.010 -0.07 0.943 -0.020 0.019 -------------------------------------------------------------------------------------- # of units = 4479. # of periods = 4. First dependent variable is from period 2. Constants are free to vary across time periods LR test of model vs. saturated: chi2(23) = 27.12, Prob > chi2 = 0.2510 IC Measures: BIC = 89552.43 AIC = 88610.58 Wald test of all coeff = 0: chi2(6) = 16.59, Prob > chi2 = 0.0109 ---------------------------------------------------------------------------- Fit statistic | Value Description ---------------------+------------------------------------------------------ Likelihood ratio | chi2_ms(23) | 27.117 model vs. saturated p > chi2 | 0.251 chi2_bs(45) | 1065.699 baseline vs. saturated p > chi2 | 0.000 ---------------------+------------------------------------------------------ Population error | RMSEA | 0.006 Root mean squared error of approximation 90% CI, lower bound | 0.000 upper bound | 0.014 pclose | 1.000 Probability RMSEA <= 0.05 ---------------------+------------------------------------------------------ Information criteria | AIC | 88610.582 Akaike's information criterion BIC | 89552.434 Bayesian information criterion ---------------------+------------------------------------------------------ Baseline comparison | CFI | 0.996 Comparative fit index TLI | 0.992 Tucker–Lewis index ---------------------+------------------------------------------------------ Size of residuals | CD | 0.198 Coefficient of determination ---------------------------------------------------------------------------- Note: SRMR is not reported because of missing values.
I already tried different options (e.g., only estimating the IV and DV without controls, which works perfectly in both programms).
Does anybody have an idea why the model does not converge/ can't be identified in mplus, but in stata?
Best,
Lisa
Comment