Dear All, I am new to this (count) model/method/command (Please search ppmlhdfe and install). The key paper is "Fast Poisson estimation with high-dimensional fixed effects", Stata Journal, 20(1), 95-115 (2020, by Correia, Guimaraes, and Zylkin). My simple question is how to interpret the estimated coefficient from the ppmlhdfe. Consider the following example (using accompanied "data citations_example.dta")
The result is (the dependent variable "cit" is the number of citations, and the key explanatory variable is "nbaut" is the number of authors in an article)
Could someone kindly tell me what does the coefficient .1896705 mean? In addition, suppose that I have a dummy variable "male" with estimated coefficient being -0.12, how do I interpret in this case? Thanks.
Code:
use citations_example, clear ppmlhdfe cit nbaut, absorb(issn type jel2 pubyear)
Code:
. use citations_example, clear . ppmlhdfe cit nbaut, absorb(issn type jel2 pubyear) Iteration 1: deviance = 2.6721e+06 eps = . iters = 6 tol = 1.0e-04 min(eta) = -3.58 P Iteration 2: deviance = 2.4118e+06 eps = 1.08e-01 iters = 5 tol = 1.0e-04 min(eta) = -4.71 Iteration 3: deviance = 2.3984e+06 eps = 5.57e-03 iters = 4 tol = 1.0e-04 min(eta) = -5.78 Iteration 4: deviance = 2.3982e+06 eps = 9.09e-05 iters = 3 tol = 1.0e-04 min(eta) = -6.45 Iteration 5: deviance = 2.3982e+06 eps = 6.40e-06 iters = 3 tol = 1.0e-05 min(eta) = -7.27 Iteration 6: deviance = 2.3982e+06 eps = 9.18e-07 iters = 3 tol = 1.0e-06 min(eta) = -7.99 Iteration 7: deviance = 2.3982e+06 eps = 1.33e-07 iters = 3 tol = 1.0e-07 min(eta) = -8.39 S Iteration 8: deviance = 2.3982e+06 eps = 5.93e-09 iters = 2 tol = 1.0e-07 min(eta) = -8.51 S Iteration 9: deviance = 2.3982e+06 eps = 1.82e-11 iters = 2 tol = 1.0e-08 min(eta) = -8.51 S Iteration 10: deviance = 2.3982e+06 eps = 1.38e-16 iters = 3 tol = 1.0e-09 min(eta) = -8.51 S O ------------------------------------------------------------------------------------------------------------ (legend: p: exact partial-out s: exact solver h: step-halving o: epsilon below tolerance) Converged in 10 iterations and 34 HDFE sub-iterations (tol = 1.0e-08) HDFE PPML regression No. of obs = 1083701 Absorbing 4 HDFE groups Residual df = 1083389 Wald chi2(1) = 3789.26 Deviance = 2398153.725 Prob > chi2 = 0.0000 Log pseudolikelihood = -1714495.906 Pseudo R2 = 0.2031 ------------------------------------------------------------------------------ | Robust cit | Coefficient std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- nbaut | .1896705 .0030812 61.56 0.000 .1836314 .1957096 _cons | .0544407 .0058841 9.25 0.000 .0429081 .0659733 ------------------------------------------------------------------------------ Absorbed degrees of freedom: -----------------------------------------------------+ Absorbed FE | Categories - Redundant = Num. Coefs | -------------+---------------------------------------| issn | 170 0 170 | type | 4 1 3 | jel2 | 124 1 123 ?| pubyear | 16 1 15 ?| -----------------------------------------------------+ ? = number of redundant parameters may be higher
Comment