Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • How to identify and differentiate between positive and negative shocks in local projections (impulse response functions)

    Dear Statalist community,

    I have an elementary question on impulse response functions generated through local projections, a methodology proposed by Jordà (2005). Estimation and inference of impulse responses by local projections. American economic review, 95(1), 161-182. When I speak of "local projections" I refer to this paper.

    Specifically, I have time series of identified shocks to global crude oil supply and monetary policy and I am interested in the impact these shocks have on cumulative inflation. I provide my code and an example of my data below, but basically my question is if and how statisticians differentiate between positive and negative shocks in local projections. Now, I know that impulse responses generated by VARs underly a symmetry assumption but I don't believe that this extends to local projections. Moreover, since I rely on shocks identified based on data, these shocks may be negative or positive depending on the time period and in the impulse response function I cannot see the nature of the shock (in contrast to unit root and orthogonal impulse responses generated by VARs). In other words, if I see that my impulse response function suggests a negative reaction of my dependent variable over the time horizon, I don't know how to interpret that since I'm not sure whether the initial monetary policy or oil supply shock was positive or negative. I hope this makes sense, I would appreciate your input.

    This is the code that produces an impulse response function over a time horizon of 5 years.

    Code:
    xtset categ t
    forv i = 0/5 {
        gen cuminf`i' = f`i'.cuminf 
    }
    
    eststo clear
    capture drop time_periods zero upper lower coeff
    gen time_periods = _n-1 if _n<=6
    gen zero =  0    if _n<=6
    gen upper=0
    gen coeff=0
    gen lower=0
    
    forv i = 0/5 {
        xtreg cuminf`i' l(1/6).cuminf l(1/6).mpshock l(1/6).oilshock, fe
        replace coeff = _b[l.oilshock]                             if _n == `i'+2
        replace upper = _b[l.oilshock] + 1.645 * _se[l.oilshock]  if _n == `i'+2
        replace lower = _b[l.oilshock] - 1.645 * _se[l.oilshock]  if _n == `i'+2
        eststo
    }
    
    nois esttab , se nocons keep(L.oilshock)
    twoway (rarea upper lower time_periods, fcolor(gs13) lcolor(gs13) lw(none) lpattern(solid)) (line coeff time_periods, lcolor(blue) lpattern(solid) lwidth(thick)) (line zero time_periods, lcolor(black)), legend(off)
    And here is an example of my code: t denotes time in moths; months are the calendar months from January to December; categ are product categories so these could be food, services, raw materials etc., inf is inflation (rate of change in the consumer price index), cuminf is cumulative inflation in each product category, mpshock are monetary policy shocks, and oilshock are shocks to the global oil supply.

    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input int t byte months double(inf cuminf mpshock oilshock) byte categ
      1  1 -.11845064795433258 -.11845064795433258  -.00758481  -.859742491011577 1
      2  2    3.73680444736101  3.6183537994066772  .000499964  -.101416699380897 1
      3  3   .8782394618848723   4.496593261291549  -.00699997  -.492805740344123 1
      4  4  -.5206729239800625  3.9759203373114866 -.002499819   .980696608288988 1
      5  5  1.9740103861530125   5.949930723464499  -.00399971   .337822957357602 1
      6  6  1.5663765854519665   7.516307308916465  .012999773  -.716288861569563 1
      7  7  3.7934459622464116  11.309753271162876  .006499767  -.656788112207912 1
      8  8  .17361882868427636  11.483372099847152  .004000187  -.932861389640944 1
      9  9  1.2234958983321458  12.706867998179298 -.001000166  -.540237430452909 1
     10 10  1.2050785198386418   13.91194651801794  -.00425005   -.24950891877466 1
     11 11  3.0777952024957322   16.98974172051367 -.007500172   1.05654907359192 1
     12 12  1.7720735640081347  18.761815284521806 -.019999981  -.972344761867327 1
     13  1   .6829108476388799   .6829108476388799 -.016000032  -1.53019295478818 2
     14  2  3.6472577944176283   4.330168642056508 -.003000021   .261949916668666 2
     15  3   2.616046556179537   6.946215198236045  .001499891  -1.53442303102815 2
     16  4  2.5911409340867744    9.53735613232282  -.07249999  -.878253629601385 2
     17  5   2.139569384628219  11.676925516951039  .003999949  .0676936992534705 2
     18  6   3.356821503518627  15.033747020469665 -.032500029  -.478871462577872 2
     19  7  1.5651029254798159  16.598849945949482  .021999836   .122494535706305 2
     20  8   3.160276256214252  19.759126202163735  .013499737    -.1448226842424 2
     21  9  3.5908702503789813  23.349996452542715           0  -.264171047780807 2
     22 10  3.0909967348648166  26.440993187407532  .000500202 -.0105628666379299 2
     23 11  -.7388615245770216   25.70213166283051 -.003499985  -1.09344326431085 2
     24 12   2.987983662748136  28.690115325578645  .004999876  -.902791280373235 2
     25  1   2.313689331416414  31.003804656995058  -.02850008  -.481625400302437 2
     26  2  2.9158830464484873   33.91968770344354  .000999928  -1.39277329530944 2
     27  3  3.0961174829346065   37.01580518637815  .005000114  -.200793386615026 2
     28  4   .7091781325226407   37.72498331890079  -.00699997  -.491697752622017 2
     29  5   2.759039679432199   40.48402299833299  .004499912   -.62989277850946 2
     30  6  -.5236487258058644  39.960374272527126  .001999855  -1.67440963492294 2
     31  7   3.139851472718094   43.10022574524522  .000500202   .347850747448338 2
     32  8  2.4878499581636713   45.58807570340889   .01099968  -.694719420182538 2
     33  9  1.8057170042738218  47.393792707682714 -.029500484  -.883736484500096 2
     34 10   3.521459811213914   50.91525251889663  .006500244  .0732174268043659 2
     35 11  -.8923436375089024   50.02290888138773 -.008499622  -1.57601827132714 2
     36 12  1.8887699667510756  51.911678848138806  -.00150013   .165092151038313 2
     37  1  .10566126153163591   52.01734010967044 -.005000114   -.84434983562608 2
     38  2  3.2900612173327985   55.30740132700324 -.031499863  -.723533112352136 2
     39  3  3.3442644629463976   58.65166578994964  .003499746 .00890008743666448 2
     40  4  1.1204844100974212   59.77215020004706   .00549984  -.417928972870517 2
     41  5   .4996964960043164   60.27184669605138  -.00399971   -.38372568538378 2
     42  6  3.2600512475923322  3.2600512475923322   .10449982   .436421624709618 3
     43  7  -.7460230305376511   2.514028217054681 -.039999962   .668184108075028 3
     44  8   2.377146565459239    4.89117478251392 -.024000168  -.404346971411131 3
     45  9   .0781369673755481   4.969311749889468 -.020999432  -.374199401411589 3
     46 10  1.8765272933215091   6.845839043210978  -.13350034   3.41553476749646 3
     47 11  1.4977998611864924    8.34363890439747   .16450024   1.93531773287233 3
     48 12   -.979364181010778   7.364274723386691  .027499795   1.90089476223377 3
     49  1 -.17270145238236245 -.17270145238236245 -.014999986  .0375167959371395 3
     50  2    3.54040030827162   3.367698855889257 -.056249976   2.74642390450234 3
     51  3   .2647757351711557   3.632474591060413  .016250014  -.633870763868911 3
     52  4   2.646778537021211   6.279253128081624   .04399997   1.40191669330257 3
     53  5  1.6772398444991286   7.956492972580753 -.028000057 -.0139604151889791 3
     54  6   1.560212125330223   9.516705097910975  .032999992  -.579901457470845 3
     55  7  1.0397500130738475  10.556455110984823 -.055500031   .826590004050571 3
     56  8 -.24683897658105325   10.30961613440377 -.009500027  -2.10463209930525 3
     57  9  2.9145714892446866  13.224187623648456 -.015500039   .504474637681826 3
     58 10   2.910563179187554   16.13475080283601 -.010499954  -.336173494745439 3
     59 11  2.9768585212370846  19.111609324073093 -.011500031 -.0679165845191818 3
     60 12   2.719175455356316  21.830784779429408 -.032000005  -1.15360992579724 3
     61  1 -.19187861560984754   21.63890616381956 -.011500031   -.28422127543813 3
     62  2 -.29493299755451696   21.34397316626504  .000999987  .0657435623105083 3
     63  3  -.8884545467803808   20.45551861948466 -.002000004    .29837170747966 3
     64  4  1.4234101599108153  21.878928779395476  .001500011  -.417664523854986 3
     65  5   .0375144572485806  21.916443236644056  .013999999   .679517756726244 3
     66  6    2.47993217986019  24.396375416504245 -.005499959  -.858314483422081 3
     67  7  1.1717252191354222  25.568100635639667  .029500067 -.0345118625333262 3
     68  8  3.8277995733823413   29.39590020902201 -.004499972  -.582247543755428 3
     69  9  2.4000247424738435  31.795924951495852 -.008000016  -.262630526212548 3
     70 10  3.1119864776618202   34.90791142915767  .006500006  -1.53498902914088 3
     71 11  2.8239015809870636  37.731813010144734 -.008000076  .0605488216633381 3
     72 12   2.408776902218519  40.140589912363254  -.03549999  -.999236937648101 3
     73  1   .6675469476276605   40.80813685999092  .009999991  -.382847477103011 3
     74  2  1.9177885720213497   42.72592543201227 -.022499979  -2.35860315614424 3
     75  3   3.554972107247357   46.28089753925963   .10700005  -2.36331459929281 3
     76  4   2.509065680284042  48.789963219543665  .016000032  -.294080919600528 3
     77  5 -.11358664278085984  48.676376576762806  -.07099998  -.757582637251801 3
     78  6  1.7726667069672573   50.44904328373006  .001000047   .150946057230369 3
     79  7   3.844458708991974  54.293501992722035  .010999918    .10765195297158 3
     80  8  1.3858156662862773   55.67931765900831  -.10900003   .882701643166809 3
     81  9  2.2552189982784148   57.93453665728673  .014499962  -2.19721605891552 3
     82 10   .6336861485931797  58.568222805879905   .11750007  -.628571197144074 3
     83 11  2.1112516341932634   60.67947444007317 -.084999979   .160098742251459 3
     84 12  -.2974578681573755    60.3820165719158  .000500023   .301078592113367 3
     85  1  -.4045178223102327  59.977498749605566  .003499955  -.183773274892422 3
     86  2  1.9963202669798852   61.97381901658545 -.001500011 -.0698330518013632 3
     87  3   3.853433674742252    65.8272526913277  .000499964  -.208817774902146 3
     88  4   2.642312696741143   68.46956538806884  .002499968   1.71804809725079 3
     89  5  1.5865337681496117   70.05609915621845  .009499997   .207456843269754 3
     90  6  1.1549046468184403   71.21100380303689  .015000015   .497050554270771 3
     91  7  2.8816227455082526   74.09262654854514 -.089500025   .322455620784582 3
     92  8   2.326108730536225   76.41873527908136  .019000001 -.0602070944459031 3
     93  9    3.89941273992231   80.31814801900367  .002500005  -.852643027926585 3
     94 10  -.9340730290554508   79.38407498994822  .002999991   .768113023363957 3
     95 11  -.3688127313819214    79.0152622585663   .00850001 .00706280310713803 3
     96 12   .4592071000445612   79.47446935861086 -.004499998 -.0341704852251901 3
     97  1  1.8009134195349352    81.2753827781458  .005999997   -1.4003106989097 3
     98  2   3.528333719128667   84.80371649727446  -.00850001  -.716843226680226 3
     99  3  3.9952576042387324    88.7989741015132  .001000002   .388047278660598 3
    100  4 .028617238773442688   88.82759134028665           0   1.12608926975935 3
    end

    I am using Stata 16.1 on windows 10

    Thank you in advance,
    Moritz
Working...
X