Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Interpreting interaction effects

    Hi, I am running some analysis on US Industrial companies (years 2000-2019) to study the effect of geographic segment diversification (GSD, log-transformed and lagged) on firm performance (EBIT_ROA, log transformed.) I use GSD in linear and quadratic forms. The regression gives a coefficient of -.0991237 (significant) for quadratic GSD. These results are produced below under bullet "A - Regression with Quadratic GSD". Now I created an interaction for the global financial crisis (I have created a categorical variable "Crisis" with values 1= pre-crisis, 2= crisis, 3= post-crisis) and find that the interaction of crisis with quadratic GSD is significant. The results are produced in B - Regression with Quadratic GSD & Crisis Interaction. In the interaction regression results, I find that quadratic GSD is no longer significant although the quadratic GSD interacted with crisis is significant. I was hoping to get some help on how to interpret such a result.

    A - Regression with Quadratic GSD

    Code:
    . xtreg Ln_EBIT_ROA Ln_Revenue Ln_LTD_to_Sales Ln_Intangible_Assets  CoAge wGDPpc wCPI wDCF wExpgr
    >  wGDPgr wCons Ln_PS_RD c.l1.Ln_GSD##c.l1.Ln_GSD if  CoAge>=0 & NATION=="UNITED STATES" & NATIONC
    > ODE==840 & FSTS>=10 & FSTS <=100 & GENERALINDUSTRYCLASSIFICATION ==1 & Year_<2020 & Year_<YearIn
    > active & Discr_GS_Rev!=1, fe cluster(n_WSID)
    
    Fixed-effects (within) regression               Number of obs     =      1,080
    Group variable: n_WSID                          Number of groups  =        215
    
    R-sq:                                           Obs per group:
         within  = 0.1161                                         min =          1
         between = 0.0028                                         avg =        5.0
         overall = 0.0000                                         max =         19
    
                                                    F(11,214)         =          .
    corr(u_i, Xb)  = -0.8655                        Prob > F          =          .
    
                                           (Std. Err. adjusted for 215 clusters in n_WSID)
    --------------------------------------------------------------------------------------
                         |               Robust
             Ln_EBIT_ROA |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    ---------------------+----------------------------------------------------------------
              Ln_Revenue |   .5227131   .1484644     3.52   0.001     .2300733    .8153529
         Ln_LTD_to_Sales |  -.1259449   .0420909    -2.99   0.003    -.2089107   -.0429792
    Ln_Intangible_Assets |  -.1111652   .0606124    -1.83   0.068    -.2306389    .0083085
                   CoAge |  -.0207395   .0128813    -1.61   0.109    -.0461301     .004651
                  wGDPpc |   .0000447   .0000238     1.88   0.062    -2.23e-06    .0000916
                    wCPI |   .0088375   .0228297     0.39   0.699    -.0361624    .0538374
                    wDCF |   9.60e-14   1.29e-13     0.74   0.458    -1.58e-13    3.50e-13
                  wExpgr |  -.0035418   .0101196    -0.35   0.727    -.0234887    .0164051
                  wGDPgr |   .0354974    .030715     1.16   0.249    -.0250454    .0960402
                   wCons |  -5.00e-15   4.48e-14    -0.11   0.911    -9.33e-14    8.32e-14
                Ln_PS_RD |  -.0533373   .0488165    -1.09   0.276    -.1495601    .0428855
                         |
                  Ln_GSD |
                     L1. |  -.6912847    .202656    -3.41   0.001    -1.090742   -.2918272
                         |
     cL.Ln_GSD#cL.Ln_GSD |  -.0991237   .0373107    -2.66   0.008    -.1726672   -.0255802
                         |
                   _cons |  -12.11932   2.610238    -4.64   0.000    -17.26439   -6.974254
    ---------------------+----------------------------------------------------------------
                 sigma_u |  1.3840627
                 sigma_e |   .5932136
                     rho |   .8448082   (fraction of variance due to u_i)
    --------------------------------------------------------------------------------------
    B - Regression with Quadratic GSD & Crisis Interaction

    Code:
    . xtreg Ln_EBIT_ROA Ln_Revenue Ln_LTD_to_Sales Ln_Intangible_Assets  CoAge wGDPpc wCPI wDCF wExpgr
    >  wGDPgr wCons Ln_PS_RD c.l1.Ln_GSD##c.l1.Ln_GSD##ib2.crisis if  CoAge>=0 & NATION=="UNITED STATE
    > S" & NATIONCODE==840 & FSTS>=10 & FSTS <=100 & GENERALINDUSTRYCLASSIFICATION ==1 & Year_<2020 & 
    > Year_<YearInactive & Discr_GS_Rev!=1, fe cluster(n_WSID)
    
    Fixed-effects (within) regression               Number of obs     =      1,080
    Group variable: n_WSID                          Number of groups  =        215
    
    R-sq:                                           Obs per group:
         within  = 0.1280                                         min =          1
         between = 0.0043                                         avg =        5.0
         overall = 0.0123                                         max =         19
    
                                                    F(17,214)         =          .
    corr(u_i, Xb)  = -0.7239                        Prob > F          =          .
    
                                                 (Std. Err. adjusted for 215 clusters in n_WSID)
    --------------------------------------------------------------------------------------------
                               |               Robust
                   Ln_EBIT_ROA |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    ---------------------------+----------------------------------------------------------------
                    Ln_Revenue |   .5231021   .1499161     3.49   0.001     .2276008    .8186035
               Ln_LTD_to_Sales |   -.125481   .0419333    -2.99   0.003    -.2081362   -.0428258
          Ln_Intangible_Assets |  -.1103335   .0615829    -1.79   0.075    -.2317202    .0110532
                         CoAge |  -.0029363   .0166989    -0.18   0.861    -.0358517    .0299791
                        wGDPpc |   .0000298   .0000218     1.37   0.172    -.0000131    .0000727
                          wCPI |   .0060675   .0254869     0.24   0.812      -.04417     .056305
                          wDCF |   1.36e-13   1.27e-13     1.07   0.285    -1.14e-13    3.85e-13
                        wExpgr |   .0126791   .0125128     1.01   0.312    -.0119851    .0373433
                        wGDPgr |   .0115004   .0300052     0.38   0.702    -.0476431     .070644
                         wCons |  -2.27e-14   4.36e-14    -0.52   0.603    -1.09e-13    6.32e-14
                      Ln_PS_RD |    -.04777   .0474308    -1.01   0.315    -.1412614    .0457213
                               |
                        Ln_GSD |
                           L1. |    -.49074   .2583853    -1.90   0.059    -1.000046    .0185662
                               |
           cL.Ln_GSD#cL.Ln_GSD |    .177507   .1103887     1.61   0.109    -.0400813    .3950953
                               |
                        crisis |
                            1  |   .0000289   .1170896     0.00   1.000    -.2307677    .2308255
                            3  |   -.244763   .1386875    -1.76   0.079    -.5181314    .0286055
                               |
              crisis#cL.Ln_GSD |
                            1  |  -.0697625   .1898751    -0.37   0.714    -.4440274    .3045024
                            3  |  -.1822128   .2083067    -0.87   0.383    -.5928084    .2283829
                               |
    crisis#cL.Ln_GSD#cL.Ln_GSD |
                            1  |  -.2631727   .1049846    -2.51   0.013    -.4701091   -.0562364
                            3  |  -.2041293   .0970556    -2.10   0.037    -.3954366   -.0128219
                               |
                         _cons |   -13.0135   2.823174    -4.61   0.000    -18.57829   -7.448709
    ---------------------------+----------------------------------------------------------------
                       sigma_u |  1.1013267
                       sigma_e |  .59130596
                           rho |  .77623771   (fraction of variance due to u_i)
    --------------------------------------------------------------------------------------------

  • #2
    I would argue that interpreting the pure numbers in this case is very difficult. I would go with a graphical interpretation. Say, the range of Ln_GSD ranges from 1 to 10, then you could try after the second regression model:

    Code:
    xtreg ...
    margins, at(Ln_GSD=(1(1)10)) by(crisis)
    marginsplot
    Best wishes

    (Stata 16.1 MP)

    Comment


    • #3
      Thank you.

      Comment

      Working...
      X