Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Regression across sub-samples vs by using interaction term

    Dear all,

    I want to do regression across three sub-samples. However the result of regressing them separately vs. using interaction term is different. Could you please help? What did I do wrong? Thank you for your help.


    Result by using separate regression for each sub-samples, if sector=1:

    Code:
    xtprobit over2 l.over2 c.l.lnGSCITOTSD##c.l.GSCITOTMG l.wgdp l.hgdp l.infl l.geopol if sector==1, re vce(robust)  
    
    
    Random-effects probit regression                Number of obs     =      3,103
    Group variable: firm                            Number of groups  =        107
    
    Random effects u_i ~ Gaussian                   Obs per group:
                                                                  min =         29
                                                                  avg =       29.0
                                                                  max =         29
    
    Integration method: mvaghermite                 Integration pts.  =         12
    
                                                    Wald chi2(8)      =     392.93
    Log pseudolikelihood  = -1087.6732              Prob > chi2       =     0.0000
    
                                                    (Std. Err. adjusted for 107 clusters in firm)
    ---------------------------------------------------------------------------------------------
                                |               Robust
                          over2 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    ----------------------------+----------------------------------------------------------------
                          over2 |
                            L1. |   1.268935   .1114277    11.39   0.000     1.050541    1.487329
                                |
                    lnGSCITOTSD |
                            L1. |  -.2170595   .0465004    -4.67   0.000    -.3081985   -.1259205
                                |
                      GSCITOTMG |
                            L1. |   .0275061   .0199155     1.38   0.167    -.0115275    .0665398
                                |
    cL.lnGSCITOTSD#cL.GSCITOTMG |  -.0032262   .0033667    -0.96   0.338    -.0098247    .0033724
                                |
                           wgdp |
                            L1. |  -.0863806   .0282783    -3.05   0.002    -.1418052   -.0309561
                                |
                           hgdp |
                            L1. |   .2159382   .0230128     9.38   0.000      .170834    .2610424
                                |
                           infl |
                            L1. |   .0931856   .0088384    10.54   0.000     .0758627    .1105085
                                |
                         geopol |
                            L1. |   .0061763   .0016261     3.80   0.000     .0029892    .0093633
                                |
                          _cons |  -.8966739   .3538679    -2.53   0.011    -1.590242   -.2031056
    ----------------------------+----------------------------------------------------------------
                       /lnsig2u |  -.8778675   .2561907                     -1.379992    -.375743
    ----------------------------+----------------------------------------------------------------
                        sigma_u |   .6447235   .0825861                      .5015781    .8287212
                            rho |   .2936199   .0531358                      .2010103     .407154
    ---------------------------------------------------------------------------------------------

    Result by using interaction term:

    Code:
    xtprobit over2 i.sector#(c.l.over2 c.l.lnGSCITOTSD##c.l.GSCITOTMG c.l.wgdp c.l.hgdp c.l.infl c.l.geopol), re vce(robust) 
    
    
    
    Random-effects probit regression                Number of obs     =     14,732
    Group variable: firm                            Number of groups  =        508
    
    Random effects u_i ~ Gaussian                   Obs per group:
                                                                  min =         29
                                                                  avg =       29.0
                                                                  max =         29
    
    Integration method: mvaghermite                 Integration pts.  =         12
    
                                                    Wald chi2(24)     =    1278.97
    Log pseudolikelihood  = -4527.8125              Prob > chi2       =     0.0000
    
                                                           (Std. Err. adjusted for 508 clusters in firm)
    ----------------------------------------------------------------------------------------------------
                                       |               Robust
                                 over2 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------------------------+----------------------------------------------------------------
                       sector#cL.over2 |
                                    1  |   1.233693   .0995269    12.40   0.000     1.038624    1.428762
                                    2  |   1.116174   .0856663    13.03   0.000     .9482715    1.284077
                                    3  |   1.587107   .0876541    18.11   0.000     1.415308    1.758906
                                       |
                 sector#cL.lnGSCITOTSD |
                                    1  |   -.199594    .043342    -4.61   0.000    -.2845426   -.1146453
                                    2  |  -.1114354   .0398321    -2.80   0.005    -.1895049   -.0333658
                                    3  |  -.2216074    .043049    -5.15   0.000    -.3059818    -.137233
                                       |
                   sector#cL.GSCITOTMG |
                                    1  |   .0319543   .0200931     1.59   0.112    -.0074275    .0713361
                                    2  |   .0587539   .0139361     4.22   0.000     .0314396    .0860682
                                    3  |     .03742   .0156501     2.39   0.017     .0067464    .0680936
                                       |
    sector#cL.lnGSCITOTSD#cL.GSCITOTMG |
                                    1  |  -.0040029    .003388    -1.18   0.237    -.0106433    .0026376
                                    2  |  -.0094008   .0023272    -4.04   0.000     -.013962   -.0048396
                                    3  |  -.0052052   .0026101    -1.99   0.046     -.010321   -.0000894
                                       |
                        sector#cL.wgdp |
                                    1  |  -.0853107   .0278813    -3.06   0.002    -.1399571   -.0306643
                                    2  |  -.0565951   .0211258    -2.68   0.007    -.0980009   -.0151892
                                    3  |  -.0896959   .0247988    -3.62   0.000    -.1383006   -.0410912
                                       |
                        sector#cL.hgdp |
                                    1  |   .2314884   .0191855    12.07   0.000     .1938855    .2690913
                                    2  |   .1925916   .0168027    11.46   0.000     .1596588    .2255243
                                    3  |   .2353004   .0173111    13.59   0.000     .2013714    .2692295
                                       |
                        sector#cL.infl |
                                    1  |   .0986052   .0077632    12.70   0.000     .0833896    .1138208
                                    2  |   .0789797    .006462    12.22   0.000     .0663145    .0916449
                                    3  |   .0970083   .0061669    15.73   0.000     .0849215    .1090951
                                       |
                      sector#cL.geopol |
                                    1  |   .0064281   .0016887     3.81   0.000     .0031183    .0097378
                                    2  |   .0054656   .0011434     4.78   0.000     .0032247    .0077066
                                    3  |   .0091764    .001425     6.44   0.000     .0063835    .0119694
                                       |
                                 _cons |  -1.090354   .1779324    -6.13   0.000    -1.439095    -.741613
    -----------------------------------+----------------------------------------------------------------
                              /lnsig2u |  -.5038364   .0954541                     -.6909231   -.3167497
    -----------------------------------+----------------------------------------------------------------
                               sigma_u |   .7773083   .0370987                      .7078936    .8535298
                                   rho |   .3766395   .0224109                      .3338278    .4214681
    ----------------------------------------------------------------------------------------------------

    Best regards,






  • #2
    Abdan:
    no wonder that different codes give back different results.
    That said, I would go with your second code that hosts -sector- as a predictor.
    Kind regards,
    Carlo
    (Stata 19.0)

    Comment


    • #3
      Dear Carlo,

      Thank you for your reply. I was following the method is post #2 by @Andrew Musau in this thread: https://www.statalist.org/forums/for...for-panel-data. In that thread, doing regression separately across group & using interaction term result in the same coefficeint estimates. So I am not sure why it is not the case with mine, is it because the model is binary/non-linear? Thank you.

      Best regards,

      Comment


      • #4
        Originally posted by Abdan Syakura View Post
        is it because the model is binary/non-linear?
        I think that a bigger source of the difference is that you have a different estimate of the variance component (σu) between the subset and the whole set. When you allow for the subset's variance component to be estimated on its own while fitting the interaction model to the whole dataset, you can get much closer estimates of the fixed effects parameters.

        For example, compare 1 versus 2 below (analogous to what you're doing) and then 1 versus 3 (allowing separate variance component estimates).

        The same phenomenon is observed even in linear mixed models, albeit less dramatically: compare 6 versus 7 and then 6 versus 8.

        (For ease of comparison, I've collected the pertinent regression coefficients into a matrix and then listed them together after fitting the last model of each series of three.)

        .ÿ
        .ÿversionÿ17.0

        .ÿ
        .ÿclearÿ*

        .ÿ
        .ÿsetÿseedÿ`=strreverse("1634262")'

        .ÿ
        .ÿquietlyÿsetÿobsÿ500

        .ÿ
        .ÿgenerateÿintÿpidÿ=ÿ_n

        .ÿgenerateÿdoubleÿpid_uÿ=ÿrnormal()

        .ÿ
        .ÿgenerateÿbyteÿgrpÿ=ÿmod(_n,ÿ2)

        .ÿgenerateÿdoubleÿpr1ÿ=ÿruniform(-0.5,ÿ0.5)

        .ÿ
        .ÿquietlyÿexpandÿ10

        .ÿgenerateÿdoubleÿpr2ÿ=ÿruniform(-0.5,ÿ0.5)

        .ÿ
        .ÿgenerateÿdoubleÿxbuÿ=ÿpr1ÿ+ÿpr2ÿ+ÿpid_u

        .ÿgenerateÿbyteÿoutÿ=ÿrbinomial(1,ÿnormal(xbu))

        .ÿ
        .ÿ*
        .ÿ*ÿBeginÿhere
        .ÿ*
        .ÿtempnameÿB

        .ÿ//ÿ1
        .ÿmeprobitÿoutÿc.pr?ÿifÿ!grpÿ||ÿpid:ÿ,ÿnolog

        Mixed-effectsÿprobitÿregressionÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿobsÿÿÿÿÿ=ÿÿÿÿÿÿ2,500
        Groupÿvariable:ÿpidÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿgroupsÿÿ=ÿÿÿÿÿÿÿÿ250

        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿObsÿperÿgroup:
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿminÿ=ÿÿÿÿÿÿÿÿÿ10
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿavgÿ=ÿÿÿÿÿÿÿ10.0
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿmaxÿ=ÿÿÿÿÿÿÿÿÿ10

        Integrationÿmethod:ÿmvaghermiteÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿIntegrationÿpts.ÿÿ=ÿÿÿÿÿÿÿÿÿÿ7

        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWaldÿchi2(2)ÿÿÿÿÿÿ=ÿÿÿÿÿ111.91
        Logÿlikelihoodÿ=ÿ-1427.8888ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿProbÿ>ÿchi2ÿÿÿÿÿÿÿ=ÿÿÿÿÿ0.0000
        ------------------------------------------------------------------------------
        ÿÿÿÿÿÿÿÿÿoutÿ|ÿCoefficientÿÿStd.ÿerr.ÿÿÿÿÿÿzÿÿÿÿP>|z|ÿÿÿÿÿ[95%ÿconf.ÿinterval]
        -------------+----------------------------------------------------------------
        ÿÿÿÿÿÿÿÿÿpr1ÿ|ÿÿÿ.8699703ÿÿÿ.2369952ÿÿÿÿÿ3.67ÿÿÿ0.000ÿÿÿÿÿ.4054682ÿÿÿÿ1.334472
        ÿÿÿÿÿÿÿÿÿpr2ÿ|ÿÿÿ1.073432ÿÿÿÿ.107106ÿÿÿÿ10.02ÿÿÿ0.000ÿÿÿÿÿ.8635078ÿÿÿÿ1.283355
        ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.0260819ÿÿÿÿ.067657ÿÿÿÿÿ0.39ÿÿÿ0.700ÿÿÿÿ-.1065233ÿÿÿÿ.1586871
        -------------+----------------------------------------------------------------
        pidÿÿÿÿÿÿÿÿÿÿ|
        ÿÿÿvar(_cons)|ÿÿÿ.9060531ÿÿÿ.1223909ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.6952998ÿÿÿÿ1.180688
        ------------------------------------------------------------------------------
        LRÿtestÿvs.ÿprobitÿmodel:ÿchibar2(01)ÿ=ÿ462.92ÿÿÿÿÿÿÿÿProbÿ>=ÿchibar2ÿ=ÿ0.0000

        .ÿmatrixÿdefineÿ`B'ÿ=ÿ(_b[_cons],ÿ_b[pr1],ÿ_b[pr2])

        .ÿ//ÿ2
        .ÿmeprobitÿoutÿibn.grpÿi.grp#c.pr1ÿi.grp#c.pr2,ÿnoconstantÿ||ÿpid:ÿ,ÿnolog

        Mixed-effectsÿprobitÿregressionÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿobsÿÿÿÿÿ=ÿÿÿÿÿÿ5,000
        Groupÿvariable:ÿpidÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿgroupsÿÿ=ÿÿÿÿÿÿÿÿ500

        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿObsÿperÿgroup:
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿminÿ=ÿÿÿÿÿÿÿÿÿ10
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿavgÿ=ÿÿÿÿÿÿÿ10.0
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿmaxÿ=ÿÿÿÿÿÿÿÿÿ10

        Integrationÿmethod:ÿmvaghermiteÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿIntegrationÿpts.ÿÿ=ÿÿÿÿÿÿÿÿÿÿ7

        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWaldÿchi2(6)ÿÿÿÿÿÿ=ÿÿÿÿÿ225.75
        Logÿlikelihoodÿ=ÿ-2787.4286ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿProbÿ>ÿchi2ÿÿÿÿÿÿÿ=ÿÿÿÿÿ0.0000
        ÿ(ÿ1)ÿÿ[out]_consÿ=ÿ0
        ------------------------------------------------------------------------------
        ÿÿÿÿÿÿÿÿÿoutÿ|ÿCoefficientÿÿStd.ÿerr.ÿÿÿÿÿÿzÿÿÿÿP>|z|ÿÿÿÿÿ[95%ÿconf.ÿinterval]
        -------------+----------------------------------------------------------------
        ÿÿÿÿÿÿÿÿÿgrpÿ|
        ÿÿÿÿÿÿÿÿÿÿ0ÿÿ|ÿÿÿ.0281212ÿÿÿ.0727523ÿÿÿÿÿ0.39ÿÿÿ0.699ÿÿÿÿ-.1144707ÿÿÿÿ.1707131
        ÿÿÿÿÿÿÿÿÿÿ1ÿÿ|ÿÿÿ.0474851ÿÿÿ.0733542ÿÿÿÿÿ0.65ÿÿÿ0.517ÿÿÿÿ-.0962864ÿÿÿÿ.1912566
        ÿÿÿÿÿÿÿÿÿÿÿÿÿ|
        ÿÿÿgrp#c.pr1ÿ|
        ÿÿÿÿÿÿÿÿÿÿ0ÿÿ|ÿÿÿ.8857161ÿÿÿ.2546667ÿÿÿÿÿ3.48ÿÿÿ0.001ÿÿÿÿÿ.3865786ÿÿÿÿ1.384854
        ÿÿÿÿÿÿÿÿÿÿ1ÿÿ|ÿÿÿ.8324888ÿÿÿ.2610894ÿÿÿÿÿ3.19ÿÿÿ0.001ÿÿÿÿÿ.3207629ÿÿÿÿ1.344215
        ÿÿÿÿÿÿÿÿÿÿÿÿÿ|
        ÿÿÿgrp#c.pr2ÿ|
        ÿÿÿÿÿÿÿÿÿÿ0ÿÿ|ÿÿÿÿ1.08886ÿÿÿ.1076909ÿÿÿÿ10.11ÿÿÿ0.000ÿÿÿÿÿ.8777891ÿÿÿÿÿ1.29993
        ÿÿÿÿÿÿÿÿÿÿ1ÿÿ|ÿÿÿ1.116619ÿÿÿ.1087964ÿÿÿÿ10.26ÿÿÿ0.000ÿÿÿÿÿ.9033822ÿÿÿÿ1.329856
        ÿÿÿÿÿÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿ_consÿ|ÿÿÿÿÿÿÿÿÿÿ0ÿÿ(omitted)
        -------------+----------------------------------------------------------------
        pidÿÿÿÿÿÿÿÿÿÿ|
        ÿÿÿvar(_cons)|ÿÿÿÿ1.07713ÿÿÿ.1022494ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.8942636ÿÿÿÿÿ1.29739
        ------------------------------------------------------------------------------
        LRÿtestÿvs.ÿprobitÿmodel:ÿchibar2(01)ÿ=ÿ1080.19ÿÿÿÿÿÿÿProbÿ>=ÿchibar2ÿ=ÿ0.0000

        .ÿmatrixÿdefineÿ`B'ÿ=ÿ`B'ÿ\ÿ(_b[0.grp],ÿ_b[0.grp#c.pr1],ÿ_b[0.grp#c.pr2])

        .ÿ//ÿ3
        .ÿquietlyÿtabulateÿgrp,ÿgenerate(grp)

        .ÿmeprobitÿoutÿibn.grpÿi.grp#c.pr1ÿi.grp#c.pr2,ÿnoconstantÿ||ÿpid:ÿgrp1ÿgrp2,ÿ///
        >ÿÿÿÿÿÿÿÿÿnoconstantÿcovariance(independent)ÿnolog

        Mixed-effectsÿprobitÿregressionÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿobsÿÿÿÿÿ=ÿÿÿÿÿÿ5,000
        Groupÿvariable:ÿpidÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿgroupsÿÿ=ÿÿÿÿÿÿÿÿ500

        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿObsÿperÿgroup:
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿminÿ=ÿÿÿÿÿÿÿÿÿ10
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿavgÿ=ÿÿÿÿÿÿÿ10.0
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿmaxÿ=ÿÿÿÿÿÿÿÿÿ10

        Integrationÿmethod:ÿmvaghermiteÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿIntegrationÿpts.ÿÿ=ÿÿÿÿÿÿÿÿÿÿ7

        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWaldÿchi2(6)ÿÿÿÿÿÿ=ÿÿÿÿÿ226.55
        Logÿlikelihoodÿ=ÿ-2785.8573ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿProbÿ>ÿchi2ÿÿÿÿÿÿÿ=ÿÿÿÿÿ0.0000
        ÿ(ÿ1)ÿÿ[out]_consÿ=ÿ0
        ------------------------------------------------------------------------------
        ÿÿÿÿÿÿÿÿÿoutÿ|ÿCoefficientÿÿStd.ÿerr.ÿÿÿÿÿÿzÿÿÿÿP>|z|ÿÿÿÿÿ[95%ÿconf.ÿinterval]
        -------------+----------------------------------------------------------------
        ÿÿÿÿÿÿÿÿÿgrpÿ|
        ÿÿÿÿÿÿÿÿÿÿ0ÿÿ|ÿÿÿ.0260818ÿÿÿ.0676571ÿÿÿÿÿ0.39ÿÿÿ0.700ÿÿÿÿ-.1065238ÿÿÿÿ.1586873
        ÿÿÿÿÿÿÿÿÿÿ1ÿÿ|ÿÿÿ.0486297ÿÿÿ.0786676ÿÿÿÿÿ0.62ÿÿÿ0.536ÿÿÿÿÿ-.105556ÿÿÿÿ.2028154
        ÿÿÿÿÿÿÿÿÿÿÿÿÿ|
        ÿÿÿgrp#c.pr1ÿ|
        ÿÿÿÿÿÿÿÿÿÿ0ÿÿ|ÿÿÿ.8699673ÿÿÿ.2369958ÿÿÿÿÿ3.67ÿÿÿ0.000ÿÿÿÿÿ.4054641ÿÿÿÿ1.334471
        ÿÿÿÿÿÿÿÿÿÿ1ÿÿ|ÿÿÿÿ.853779ÿÿÿ.2802631ÿÿÿÿÿ3.05ÿÿÿ0.002ÿÿÿÿÿ.3044735ÿÿÿÿ1.403085
        ÿÿÿÿÿÿÿÿÿÿÿÿÿ|
        ÿÿÿgrp#c.pr2ÿ|
        ÿÿÿÿÿÿÿÿÿÿ0ÿÿ|ÿÿÿ1.073432ÿÿÿÿ.107106ÿÿÿÿ10.02ÿÿÿ0.000ÿÿÿÿÿ.8635081ÿÿÿÿ1.283356
        ÿÿÿÿÿÿÿÿÿÿ1ÿÿ|ÿÿÿ1.134964ÿÿÿ.1102606ÿÿÿÿ10.29ÿÿÿ0.000ÿÿÿÿÿ.9188567ÿÿÿÿÿ1.35107
        ÿÿÿÿÿÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿ_consÿ|ÿÿÿÿÿÿÿÿÿÿ0ÿÿ(omitted)
        -------------+----------------------------------------------------------------
        pidÿÿÿÿÿÿÿÿÿÿ|
        ÿÿÿÿvar(grp1)|ÿÿÿ.9060588ÿÿÿ.1223921ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.6953035ÿÿÿÿ1.180697
        ÿÿÿÿvar(grp2)|ÿÿÿ1.269235ÿÿÿ.1701886ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.9759024ÿÿÿÿ1.650736
        ------------------------------------------------------------------------------
        LRÿtestÿvs.ÿprobitÿmodel:ÿchi2(2)ÿ=ÿ1083.34ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿProbÿ>ÿchi2ÿ=ÿ0.0000

        Note:ÿLRÿtestÿisÿconservativeÿandÿprovidedÿonlyÿforÿreference.

        .ÿmatrixÿdefineÿ`B'ÿ=ÿ`B'ÿ\ÿ(_b[0.grp],ÿ_b[0.grp#c.pr1],ÿ_b[0.grp#c.pr2])

        .ÿmatrixÿlistÿ`B',ÿformat(%08.6f)ÿnoheader

        ÿÿÿÿÿÿÿÿÿÿc1ÿÿÿÿÿÿÿÿc2ÿÿÿÿÿÿÿÿc3
        r1ÿÿ0.026082ÿÿ0.869970ÿÿ1.073432
        r2ÿÿ0.028121ÿÿ0.885716ÿÿ1.088860
        r3ÿÿ0.026082ÿÿ0.869967ÿÿ1.073432

        .ÿ
        .ÿgenerateÿdoubleÿxbueÿ=ÿxbuÿ+ÿrnormal()

        .ÿ/*ÿ//ÿ4
        >ÿregressÿxbueÿc.pr?ÿifÿ!grp
        >ÿ//ÿ5
        >ÿregressÿxbueÿibn.grpÿi.grp#c.pr1ÿi.grp#c.pr2,ÿnoconstantÿ*/
        .ÿ
        .ÿ//ÿ6
        .ÿmixedÿxbueÿc.pr?ÿifÿ!grpÿ||ÿpid:ÿ,ÿnolrtestÿnolog

        Mixed-effectsÿMLÿregressionÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿobsÿÿÿÿÿ=ÿÿÿÿÿÿ2,500
        Groupÿvariable:ÿpidÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿgroupsÿÿ=ÿÿÿÿÿÿÿÿ250
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿObsÿperÿgroup:
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿminÿ=ÿÿÿÿÿÿÿÿÿ10
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿavgÿ=ÿÿÿÿÿÿÿ10.0
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿmaxÿ=ÿÿÿÿÿÿÿÿÿ10
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWaldÿchi2(2)ÿÿÿÿÿÿ=ÿÿÿÿÿ172.48
        Logÿlikelihoodÿ=ÿ-3835.2935ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿProbÿ>ÿchi2ÿÿÿÿÿÿÿ=ÿÿÿÿÿ0.0000

        ------------------------------------------------------------------------------
        ÿÿÿÿÿÿÿÿxbueÿ|ÿCoefficientÿÿStd.ÿerr.ÿÿÿÿÿÿzÿÿÿÿP>|z|ÿÿÿÿÿ[95%ÿconf.ÿinterval]
        -------------+----------------------------------------------------------------
        ÿÿÿÿÿÿÿÿÿpr1ÿ|ÿÿÿ.8136101ÿÿÿ.2243124ÿÿÿÿÿ3.63ÿÿÿ0.000ÿÿÿÿÿ.3739658ÿÿÿÿ1.253254
        ÿÿÿÿÿÿÿÿÿpr2ÿ|ÿÿÿ.9106619ÿÿÿ.0720843ÿÿÿÿ12.63ÿÿÿ0.000ÿÿÿÿÿ.7693793ÿÿÿÿ1.051945
        ÿÿÿÿÿÿÿ_consÿ|ÿÿÿ.0318109ÿÿÿ.0641209ÿÿÿÿÿ0.50ÿÿÿ0.620ÿÿÿÿ-.0938638ÿÿÿÿ.1574857
        ------------------------------------------------------------------------------

        ------------------------------------------------------------------------------
        ÿÿRandom-effectsÿparametersÿÿ|ÿÿÿEstimateÿÿÿStd.ÿerr.ÿÿÿÿÿ[95%ÿconf.ÿinterval]
        -----------------------------+------------------------------------------------
        pid:ÿIdentityÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿvar(_cons)ÿ|ÿÿÿ.9276529ÿÿÿ.0919464ÿÿÿÿÿÿ.7638652ÿÿÿÿÿ1.12656
        -----------------------------+------------------------------------------------
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿvar(Residual)ÿ|ÿÿÿ.9971148ÿÿÿ.0297285ÿÿÿÿÿÿ.9405177ÿÿÿÿ1.057118
        ------------------------------------------------------------------------------

        .ÿmatrixÿdefineÿ`B'ÿ=ÿ(_b[_cons],ÿ_b[pr1],ÿ_b[pr2])

        .ÿ//ÿ7
        .ÿmixedÿxbueÿibn.grpÿi.grp#c.pr1ÿi.grp#c.pr2,ÿnoconstantÿ||ÿpid:ÿ,ÿnolrtestÿnolog

        Mixed-effectsÿMLÿregressionÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿobsÿÿÿÿÿ=ÿÿÿÿÿÿ5,000
        Groupÿvariable:ÿpidÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿgroupsÿÿ=ÿÿÿÿÿÿÿÿ500
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿObsÿperÿgroup:
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿminÿ=ÿÿÿÿÿÿÿÿÿ10
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿavgÿ=ÿÿÿÿÿÿÿ10.0
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿmaxÿ=ÿÿÿÿÿÿÿÿÿ10
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWaldÿchi2(6)ÿÿÿÿÿÿ=ÿÿÿÿÿ408.78
        Logÿlikelihoodÿ=ÿ-7749.7942ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿProbÿ>ÿchi2ÿÿÿÿÿÿÿ=ÿÿÿÿÿ0.0000

        ------------------------------------------------------------------------------
        ÿÿÿÿÿÿÿÿxbueÿ|ÿCoefficientÿÿStd.ÿerr.ÿÿÿÿÿÿzÿÿÿÿP>|z|ÿÿÿÿÿ[95%ÿconf.ÿinterval]
        -------------+----------------------------------------------------------------
        ÿÿÿÿÿÿÿÿÿgrpÿ|
        ÿÿÿÿÿÿÿÿÿÿ0ÿÿ|ÿÿÿ.0318186ÿÿÿ.0695243ÿÿÿÿÿ0.46ÿÿÿ0.647ÿÿÿÿ-.1044465ÿÿÿÿ.1680836
        ÿÿÿÿÿÿÿÿÿÿ1ÿÿ|ÿÿÿ.0587324ÿÿÿ.0696837ÿÿÿÿÿ0.84ÿÿÿ0.399ÿÿÿÿ-.0778451ÿÿÿÿ.1953099
        ÿÿÿÿÿÿÿÿÿÿÿÿÿ|
        ÿÿÿgrp#c.pr1ÿ|
        ÿÿÿÿÿÿÿÿÿÿ0ÿÿ|ÿÿÿ.8135965ÿÿÿ.2432151ÿÿÿÿÿ3.35ÿÿÿ0.001ÿÿÿÿÿ.3369036ÿÿÿÿ1.290289
        ÿÿÿÿÿÿÿÿÿÿ1ÿÿ|ÿÿÿ.9162256ÿÿÿ.2477042ÿÿÿÿÿ3.70ÿÿÿ0.000ÿÿÿÿÿ.4307343ÿÿÿÿ1.401717
        ÿÿÿÿÿÿÿÿÿÿÿÿÿ|
        ÿÿÿgrp#c.pr2ÿ|
        ÿÿÿÿÿÿÿÿÿÿ0ÿÿ|ÿÿÿÿ.909239ÿÿÿ.0727646ÿÿÿÿ12.50ÿÿÿ0.000ÿÿÿÿÿ.7666231ÿÿÿÿ1.051855
        ÿÿÿÿÿÿÿÿÿÿ1ÿÿ|ÿÿÿÿÿ1.0763ÿÿÿ.0715522ÿÿÿÿ15.04ÿÿÿ0.000ÿÿÿÿÿ.9360597ÿÿÿÿ1.216539
        ------------------------------------------------------------------------------

        ------------------------------------------------------------------------------
        ÿÿRandom-effectsÿparametersÿÿ|ÿÿÿEstimateÿÿÿStd.ÿerr.ÿÿÿÿÿ[95%ÿconf.ÿinterval]
        -----------------------------+------------------------------------------------
        pid:ÿIdentityÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿvar(_cons)ÿ|ÿÿÿ1.106369ÿÿÿ.0764218ÿÿÿÿÿÿ.9662814ÿÿÿÿ1.266765
        -----------------------------+------------------------------------------------
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿvar(Residual)ÿ|ÿÿÿ1.014438ÿÿÿ.0213863ÿÿÿÿÿÿ.9733755ÿÿÿÿ1.057232
        ------------------------------------------------------------------------------

        .ÿmatrixÿdefineÿ`B'ÿ=ÿ`B'ÿ\ÿ(_b[0.grp],ÿ_b[0.grp#c.pr1],ÿ_b[0.grp#c.pr2])

        .ÿ//ÿ8
        .ÿmixedÿxbueÿibn.grpÿi.grp#c.pr1ÿi.grp#c.pr2,ÿnoconstantÿ||ÿpid:ÿgrp1ÿgrp2,ÿ///
        >ÿÿÿÿÿÿÿÿÿnoconstantÿcovariance(independent)ÿresiduals(independent,ÿby(grp))ÿ///
        >ÿÿÿÿÿÿÿÿÿnolrtestÿnolog

        Mixed-effectsÿMLÿregressionÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿobsÿÿÿÿÿ=ÿÿÿÿÿÿ5,000
        Groupÿvariable:ÿpidÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿNumberÿofÿgroupsÿÿ=ÿÿÿÿÿÿÿÿ500
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿObsÿperÿgroup:
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿminÿ=ÿÿÿÿÿÿÿÿÿ10
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿavgÿ=ÿÿÿÿÿÿÿ10.0
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿmaxÿ=ÿÿÿÿÿÿÿÿÿ10
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWaldÿchi2(6)ÿÿÿÿÿÿ=ÿÿÿÿÿ408.06
        Logÿlikelihoodÿ=ÿ-7746.6449ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿProbÿ>ÿchi2ÿÿÿÿÿÿÿ=ÿÿÿÿÿ0.0000

        ------------------------------------------------------------------------------
        ÿÿÿÿÿÿÿÿxbueÿ|ÿCoefficientÿÿStd.ÿerr.ÿÿÿÿÿÿzÿÿÿÿP>|z|ÿÿÿÿÿ[95%ÿconf.ÿinterval]
        -------------+----------------------------------------------------------------
        ÿÿÿÿÿÿÿÿÿgrpÿ|
        ÿÿÿÿÿÿÿÿÿÿ0ÿÿ|ÿÿÿ.0318109ÿÿÿ.0641209ÿÿÿÿÿ0.50ÿÿÿ0.620ÿÿÿÿ-.0938638ÿÿÿÿ.1574857
        ÿÿÿÿÿÿÿÿÿÿ1ÿÿ|ÿÿÿ.0587277ÿÿÿÿ.074707ÿÿÿÿÿ0.79ÿÿÿ0.432ÿÿÿÿ-.0876953ÿÿÿÿ.2051508
        ÿÿÿÿÿÿÿÿÿÿÿÿÿ|
        ÿÿÿgrp#c.pr1ÿ|
        ÿÿÿÿÿÿÿÿÿÿ0ÿÿ|ÿÿÿ.8136101ÿÿÿ.2243125ÿÿÿÿÿ3.63ÿÿÿ0.000ÿÿÿÿÿ.3739658ÿÿÿÿ1.253254
        ÿÿÿÿÿÿÿÿÿÿ1ÿÿ|ÿÿÿ.9162326ÿÿÿ.2655618ÿÿÿÿÿ3.45ÿÿÿ0.001ÿÿÿÿÿÿ.395741ÿÿÿÿ1.436724
        ÿÿÿÿÿÿÿÿÿÿÿÿÿ|
        ÿÿÿgrp#c.pr2ÿ|
        ÿÿÿÿÿÿÿÿÿÿ0ÿÿ|ÿÿÿ.9106619ÿÿÿ.0720843ÿÿÿÿ12.63ÿÿÿ0.000ÿÿÿÿÿ.7693793ÿÿÿÿ1.051945
        ÿÿÿÿÿÿÿÿÿÿ1ÿÿ|ÿÿÿ1.075803ÿÿÿ.0721943ÿÿÿÿ14.90ÿÿÿ0.000ÿÿÿÿÿ.9343043ÿÿÿÿ1.217301
        ------------------------------------------------------------------------------

        ------------------------------------------------------------------------------
        ÿÿRandom-effectsÿparametersÿÿ|ÿÿÿEstimateÿÿÿStd.ÿerr.ÿÿÿÿÿ[95%ÿconf.ÿinterval]
        -----------------------------+------------------------------------------------
        pid:ÿIndependentÿÿÿÿÿÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿvar(grp1)ÿ|ÿÿÿÿ.927653ÿÿÿ.0919464ÿÿÿÿÿÿ.7638653ÿÿÿÿÿ1.12656
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿvar(grp2)ÿ|ÿÿÿ1.285065ÿÿÿ.1242076ÿÿÿÿÿÿ1.063291ÿÿÿÿ1.553094
        -----------------------------+------------------------------------------------
        Residual:ÿIndependent,ÿÿÿÿÿÿÿ|
        ÿÿÿÿbyÿgrpÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ0:ÿvar(e)ÿ|ÿÿÿ.9971146ÿÿÿ.0297285ÿÿÿÿÿÿ.9405176ÿÿÿÿ1.057118
        ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ1:ÿvar(e)ÿ|ÿÿÿ1.031763ÿÿÿ.0307613ÿÿÿÿÿÿ.9731996ÿÿÿÿÿ1.09385
        ------------------------------------------------------------------------------

        .ÿmatrixÿdefineÿ`B'ÿ=ÿ`B'ÿ\ÿ(_b[0.grp],ÿ_b[0.grp#c.pr1],ÿ_b[0.grp#c.pr2])

        .ÿmatrixÿlistÿ`B',ÿformat(%08.6f)ÿnoheader

        ÿÿÿÿÿÿÿÿÿÿc1ÿÿÿÿÿÿÿÿc2ÿÿÿÿÿÿÿÿc3
        r1ÿÿ0.031811ÿÿ0.813610ÿÿ0.910662
        r2ÿÿ0.031819ÿÿ0.813597ÿÿ0.909239
        r3ÿÿ0.031811ÿÿ0.813610ÿÿ0.910662

        .ÿ
        .ÿexit

        endÿofÿdo-file


        .

        Comment


        • #5
          Originally posted by Abdan Syakura View Post
          Thank you for your reply. I was following the method is post #2 by @Andrew Musau in this thread: https://www.statalist.org/forums/for...for-panel-data. In that thread, doing regression separately across group & using interaction term result in the same coefficeint estimates. So I am not sure why it is not the case with mine, is it because the model is binary/non-linear? Thank you.
          If you want to replicate Andrew's method you need to include sector in the regression.
          If sector is binary,
          Code:
          xtprobit over2 l.over2 c.l.lnGSCITOTSD##c.l.GSCITOTMG   l.wgdp   l.hgdp   l.infl   l.geopol i.sector if sector==1, re vce(robust) 
          xtprobit over2 l.over2 c.l.lnGSCITOTSD##c.l.GSCITOTMG   l.wgdp   l.hgdp   l.infl   l.geopol i.sector if sector==0, re vce(robust) 
          xtprobit over2 i.sector#(c.l.over2 c.l.lnGSCITOTSD##c.l.GSCITOTMG c.l.wgdp c.l.hgdp c.l.infl c.l.geopol i.sector), re vce(robust)
          If sector is categorical ranging from, say, 1-3,
          Code:
          gen newvar = sector < 3
          xtprobit over2 l.over2 c.l.lnGSCITOTSD##c.l.GSCITOTMG   l.wgdp   l.hgdp   l.infl   l.geopol i.sector if newvar==1, re vce(robust) 
          xtprobit over2 l.over2 c.l.lnGSCITOTSD##c.l.GSCITOTMG   l.wgdp   l.hgdp   l.infl   l.geopol i.sector if newvar==0, re vce(robust) 
          xtprobit over2 i.newvar#(c.l.over2 c.l.lnGSCITOTSD##c.l.GSCITOTMG c.l.wgdp c.l.hgdp c.l.infl c.l.geopol i.sector), re vce(robust)

          Comment


          • #6
            Hi Joseph and Oyvind,

            Thank you for your time and suggestion. I am now able to obtain the same estimates between sub-samples and interaction model by using Joseph's method above.


            Best regards,





            Comment

            Working...
            X