Hello,
I am studying country structural transformation by regressing log(manufacturing value added per capita) on log(GDP per capita), its quadratic and cubic terms, population density, population and natural resources as share of GDP using a fixed effects country panel, as follows:
However, due to suspected endogeneity of GDP per capita (since manufacturing is a component of GDP), I use the 2-year lagged GDP per capita as an instrument for GDP per capita, as follows:
When I use robust standard errors I get the below output:
However, when I try to cluster the errors (which is the default if I used xtivreg with vce robust), I would lose significance of all variables as follows:
Is this a problem with the model or is clustering not appropriate in this case?
Thanks a lot in advance and best regards,
Moheb
I am studying country structural transformation by regressing log(manufacturing value added per capita) on log(GDP per capita), its quadratic and cubic terms, population density, population and natural resources as share of GDP using a fixed effects country panel, as follows:
Code:
xtreg lmvapc lgdppc lgdppc2 lgdppc3 lpopdensity lpop dependency_ratio natural_resource_rent ,fe
Code:
ivregress 2sls lmvapc lpopdensity lpop dependency_ratio natural_resource_rent i.$id (lgdppc_weo lgdppc2_weo lgdppc3_weo = l2lgdp l2lgdp2 l2lgdp3)
Code:
Instrumental variables 2SLS regression Number of obs = 4,752 Wald chi2(181) = 1531972.35 Prob > chi2 = 0.0000 R-squared = 0.9861 Root MSE = .19314 --------------------------------------------------------------------------------------- | Robust lmvapc | Coefficient std. err. z P>|z| [95% conf. interval] ----------------------+---------------------------------------------------------------- lgdppc_weo | 2.70563 1.304755 2.07 0.038 .1483583 5.262902 lgdppc2_weo | -.1551981 .1500386 -1.03 0.301 -.4492684 .1388722 lgdppc3_weo | .0041253 .0056705 0.73 0.467 -.0069887 .0152392 lpopdensity | -.0222306 .0199534 -1.11 0.265 -.0613386 .0168774 lpop | -.1678059 .0371796 -4.51 0.000 -.2406766 -.0949351 dependency_ratio | -.0030668 .0009559 -3.21 0.001 -.0049402 -.0011933 natural_resource_rent | -.0017048 .0009515 -1.79 0.073 -.0035697 .00016
Code:
Instrumental variables 2SLS regression Number of obs = 4,752 Wald chi2(181) = 467.03 Prob > chi2 = 0.0000 R-squared = 0.9861 Root MSE = .19314 (Std. err. adjusted for 175 clusters in countryid) --------------------------------------------------------------------------------------- | Robust lmvapc | Coefficient std. err. z P>|z| [95% conf. interval] ----------------------+---------------------------------------------------------------- lgdppc_weo | 2.70563 3.188655 0.85 0.396 -3.544019 8.955279 lgdppc2_weo | -.1551981 .3662342 -0.42 0.672 -.8730039 .5626077 lgdppc3_weo | .0041253 .0139253 0.30 0.767 -.0231679 .0314184 lpopdensity | -.0222306 .0519262 -0.43 0.669 -.1240041 .0795429 lpop | -.1678059 .1191995 -1.41 0.159 -.4014327 .0658209 dependency_ratio | -.0030668 .0027595 -1.11 0.266 -.0084753 .0023418 natural_resource_rent | -.0017048 .0014137 -1.21 0.228 -.0044757 .001066
Thanks a lot in advance and best regards,
Moheb
Comment