when to know when to use mixed effects panel data model in stata?
-
Login or Register
- Log in with
. use http://www.stata-press.com/data/r16/pig.dta (Longitudinal analysis of pig weights) . xtset id week panel variable: id (strongly balanced) time variable: week, 1 to 9 delta: 1 unit . xtreg weight week, mle Fitting constant-only model: Iteration 0: log likelihood = -1827.2124 Iteration 1: log likelihood = -1827.2118 Fitting full model: Iteration 0: log likelihood = -1014.9757 Iteration 1: log likelihood = -1014.9268 Iteration 2: log likelihood = -1014.9268 Random-effects ML regression Number of obs = 432 Group variable: id Number of groups = 48 Random effects u_i ~ Gaussian Obs per group: min = 9 avg = 9.0 max = 9 LR chi2(1) = 1624.57 Log likelihood = -1014.9268 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ weight | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- week | 6.209896 .0390124 159.18 0.000 6.133433 6.286359 _cons | 19.35561 .5974055 32.40 0.000 18.18472 20.52651 -------------+---------------------------------------------------------------- /sigma_u | 3.84935 .4058114 3.130767 4.732863 /sigma_e | 2.093625 .0755471 1.95067 2.247056 rho | .771714 .0393959 .6876303 .8413114 ------------------------------------------------------------------------------ LR test of sigma_u=0: chibar2(01) = 472.65 Prob >= chibar2 = 0.000 . mixed weight week || id:, stddev Performing EM optimization: Performing gradient-based optimization: Iteration 0: log likelihood = -1014.9268 Iteration 1: log likelihood = -1014.9268 Computing standard errors: Mixed-effects ML regression Number of obs = 432 Group variable: id Number of groups = 48 Obs per group: min = 9 avg = 9.0 max = 9 Wald chi2(1) = 25337.49 Log likelihood = -1014.9268 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ weight | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- week | 6.209896 .0390124 159.18 0.000 6.133433 6.286359 _cons | 19.35561 .5974059 32.40 0.000 18.18472 20.52651 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ id: Identity | sd(_cons) | 3.849352 .4058119 3.130769 4.732866 -----------------------------+------------------------------------------------ sd(Residual) | 2.093625 .0755472 1.95067 2.247056 ------------------------------------------------------------------------------ LR test vs. linear model: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000 .
Comment