Dear
I want to know when and why I can use robust command in Stata for panel regression model?!
I want to know when and why I can use robust command in Stata for panel regression model?!
xtmg dTotalExpenditurePropGDP lx1 lx2 lx3 slopedummy1 slopedummy2 slopedummy3 , aug robust trend Augmented Mean Group estimator (Bond & Eberhardt, 2009; Eberhardt & Teal, 2010) Common dynamic process included as additional regressor All coefficients represent averages across groups (group variable: CountryID) Coefficient averages computed as outlier-robust means (using rreg) Mean Group type estimation Number of obs = 796 AMG Wald chi2(6) = 3.54 Prob > chi2 = 0.7382 ------------------------------------------------------------------------------ dTotalExpe~P | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- lx1 | .0151935 .0193858 0.78 0.433 -.0228019 .053189 lx2 | -.0115215 .0116609 -0.99 0.323 -.0343764 .0113334 lx3 | -.0149404 .0146712 -1.02 0.309 -.0436955 .0138147 slopedummy1 | -.0300774 .0330989 -0.91 0.364 -.09495 .0347953 slopedummy2 | -.0040926 .0149124 -0.27 0.784 -.0333204 .0251352 slopedummy3 | -.0023147 .0192515 -0.12 0.904 -.0400469 .0354174 c_d_p | .4084651 .1071969 3.81 0.000 .198363 .6185671 trend | -.0001642 .0001878 -0.87 0.382 -.0005323 .0002039 _cons | .0011697 .00565 0.21 0.836 -.0099041 .0122435 ------------------------------------------------------------------------------ Root Mean Squared Error (sigma): 0.0564 (RMSE uses residuals from group-specific regressions: unaffected by 'robust'). Variable c_d_p refers to the common dynamic process. Variable trend refers to the group-specific linear trend terms. Share of group-specific trends significant at 5% level: 0.034 (= 1 trends) . estat vce, corr Correlation matrix of coefficients of xtmg model e(V) | lx1 lx2 lx3 sloped~1 sloped~2 sloped~3 c_d_p trend _cons -------------+------------------------------------------------------------------------------------------ lx1 | 1.0000 lx2 | 0.0000 1.0000 lx3 | 0.0000 0.0000 1.0000 slopedummy1 | 0.0000 0.0000 0.0000 1.0000 slopedummy2 | 0.0000 0.0000 0.0000 0.0000 1.0000 slopedummy3 | 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 c_d_p | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 trend | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 _cons | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
. xtmg dTotalExpenditurePropGDP lx1 lx2 lx3 slopedummy1 slopedummy2 slopedummy3 , aug trend Augmented Mean Group estimator (Bond & Eberhardt, 2009; Eberhardt & Teal, 2010) Common dynamic process included as additional regressor All coefficients represent averages across groups (group variable: CountryID) Coefficient averages computed as unweighted means Mean Group type estimation Number of obs = 796 AMG Wald chi2(6) = 25.75 Prob > chi2 = 0.0002 ------------------------------------------------------------------------------ dTotalExpe~P | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- lx1 | .0002567 .0280607 0.01 0.993 -.0547412 .0552546 lx2 | -.0333057 .0264025 -1.26 0.207 -.0850536 .0184421 lx3 | -.0371906 .0244625 -1.52 0.128 -.0851362 .0107551 slopedummy1 | -.0028595 .0525642 -0.05 0.957 -.1058835 .1001644 slopedummy2 | .0082383 .0379022 0.22 0.828 -.0660487 .0825252 slopedummy3 | .0056132 .0352261 0.16 0.873 -.0634287 .0746551 c_d_p | .9166282 .3837471 2.39 0.017 .1644977 1.668759 trend | .0001598 .0005796 0.28 0.783 -.0009762 .0012958 _cons | -.0140172 .0244095 -0.57 0.566 -.0618589 .0338245 ------------------------------------------------------------------------------ Root Mean Squared Error (sigma): 0.0564 Variable c_d_p refers to the common dynamic process. Variable trend refers to the group-specific linear trend terms. Share of group-specific trends significant at 5% level: 0.034 (= 1 trends) . estat vce, corr Correlation matrix of coefficients of xtmg model e(V) | lx1 lx2 lx3 sloped~1 sloped~2 sloped~3 c_d_p trend _cons -------------+------------------------------------------------------------------------------------------ lx1 | 1.0000 lx2 | 0.0051 1.0000 lx3 | 0.6117 -0.4777 1.0000 slopedummy1 | -0.9330 -0.0803 -0.5047 1.0000 slopedummy2 | 0.2486 -0.9171 0.6065 -0.2269 1.0000 slopedummy3 | -0.2022 0.6431 -0.8070 0.0423 -0.5423 1.0000 c_d_p | -0.7436 0.0499 -0.6813 0.7451 -0.4010 0.1653 1.0000 trend | -0.2870 -0.0004 -0.5359 0.1493 0.0901 0.6254 0.0898 1.0000 _cons | 0.4319 0.0643 0.6144 -0.3100 -0.0874 -0.6106 -0.2458 -0.9790 1.0000 .
Comment