Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Difference between a classical DID and panel regression wrt interaction term

    Dear Stata Members
    I have a question related to the interpretation and choosing the right model. Let me illucidate this with an example.

    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input long entity int year float(borrowings wealth contro1 contro2)
       11 2011    .5504084   .3566245   .001049701           .
       11 2012    .5697871   .3026321    .04574671   .18446903
       11 2013    .5391156   .4967295    .14580062   .03579957
       11 2014   .51597077   .4602628    .10729927   .05016179
       11 2015    .4759782   .4324788    .08659865    .0874485
       11 2016    .4625662   .4278921   .071952224 .0022719898
       11 2017   .39045715   .4538369    .11401688   .09341507
       11 2018   .33070305   .4544985     .1488938   .08986207
       11 2019    .2839154   .4448069    .12172364   .12575735
      289 2011   .54094803   .3170305  -.035701364           .
      289 2012    .5555683   .4265102    .20956197    .2240876
      289 2013   .51333773  .43153745    .12207622   -.3072764
      289 2014   .48577145   .3902475     .0349044    -.087109
      363 2011    .4761355   .6830103    .10337277           .
      363 2012    .4731195    .635296    .06661269    .1102981
      363 2013   .53195494   .5600299    .04350695   -.3359406
      363 2014    .4994195   .4138399    .09209046   -.3629895
      363 2015   .51551414   .3602918    .04091703  .021681974
      363 2016    .5284721   .4900997    .06195928   .07478184
      363 2017    .5849603  .47596115    .04966863  -.14924355
      363 2018    .4416465   .3467005   .017113568    2.728524
      363 2019     .689352   .6998312   .010639434    -.661924
      414 2016    .4542443  .03726708   -.06832298           .
      414 2017  .006420134   .0480226   -.10297894    .3064353
      414 2018  .005577936  .05113108            0   -.3771344
      415 2018           .  .25162724   -.06337353           .
      415 2019           .    .273057    .23241054 -.023724906
      771 2013    .4651715  .29406333 -.0046174144           .
      771 2014    .5203515  .24431875   -.04403596    .3764192
      771 2015     .461695   .2143613    .02035333     .367132
      771 2016    .5473848   .1589128    -.1711411    .2298338
      771 2017    .5459776  .13162291    .02329034   .08634616
      771 2018    .4951338  .11822204  -.014577627 -.024664767
      771 2019    .4645513  .10804316    .09069066   .25544947
      783 2011   .19831736   .4684654    .11470844           .
      783 2012    .2092255   .4061761    .04089833    .2104566
      783 2013   .19775394   .3961418   .006883122   .14734472
      783 2014   .13007422    .366352    .08283698   .16174816
      783 2015   .08677534     .42655    .03452697 -.021924905
      783 2016  .033318035   .3804956    .07058284  .031698983
      783 2017  .025697127   .3541734    .07881384  -.03924384
      783 2018  .014560171   .3721915    .11289947   .03765883
      783 2019 .0009790963   .3375435     .0960983   .16825883
     1120 2011  .016338103   .2180963   .026797576           .
     1120 2012  .032134537   .2383646   .062702514   .22125916
     1120 2013   .08688986  .20360494     .0880451   .23629524
     1120 2014   .05394961   .1738267    .20202254    .1875501
     1120 2015   .03865692  .21615265     .1203531   .04958552
     1120 2016   .06567325  .24021226    .21261434  -.03890164
     1120 2017     .043705  .20884947     .0718712   .06808196
     1120 2018   .03458266  .18803462    .08242624   .09054825
     1120 2019  .031668555  .20853548    .04683747   .25766295
     2248 2017    .1482503   .4667431   .025896344           .
     2248 2018   .15626974  .48310015    .08627738   .09444503
     2717 2011    .3987688  .52997494    .14493908           .
     2717 2012    .5396248   .5388584    .15598004    .3650029
     2717 2013     .521483   .4544449    .19313775  .005588582
     2717 2014    .5139446   .4897545    .25459048   .18795657
     2717 2015    .4747386   .4586011    .24208185    .0889574
     2717 2016   .31001255  .45573065    .28510892   .17703804
     2717 2017   .26234335   .4712567    .18955813   .04058781
     2717 2018    .2209677   .7917002    .06728955    .5302293
     2717 2019   .19191967    .699398   .074500315    .3378055
     2842 2011   .24950735   .4182204     .3022586           .
     2842 2012    .3842184  .47379285    .03693084    .3031987
     2842 2013    .3622974   .5271885    .13663733    .2029563
     2842 2014    .3780394   .5113045   .013650713  -.04777961
     2842 2015    .3651952   .4876061    .08998302 -.017345913
     2842 2016   .19154836  .08928572   -.27983585    -.617762
     2842 2017  .012137886  .10746075     .3346093   .29977635
     2842 2018   .11468551  .09463358   .001154068   .01475289
     2842 2019    .1701168   .1248988   .032728113   .07911314
     3335 2011    .3992996  .26422244    .01107776           .
     3335 2012    .1974824  .19707473    .20451534    .7005484
     3335 2013   .15542907   .1971979     .1561734   .07927933
     3335 2014   .02286336   .2117583    .28621078   .08559263
     3335 2015  .028543843  .22432104    .04865046  -.12535256
     3335 2016   .03890818  .23201247     .1335648    .0577361
     3335 2017   .05525101   .2071913    .05593624    .1520042
     3335 2018   .10858244  .16878895    .04280683   .05487057
     3335 2019    .2077677  .25074002   -.07555885  .033351693
     3990 2011    .5109358   .4552348    .03000898           .
     3990 2015    .4456229  .44618005    .10405827           .
     3990 2016   .43831205   .4473882    .12087333  .037120655
     3990 2017    .4056455   .4878761    .14671211   .05311526
     3990 2018    .3955588   .4333314    .05018127    .0405465
     3990 2019    .3502277  .42918175    .09828218    .2551483
     3998 2011   .37776425  .29451075    .04358516           .
     3998 2012    .3780212  .26692954    .07272071    .1514226
     3998 2013   .39086115   .3095832    .10558873     .252045
     3998 2014    .3920296  .30943435    .11797553    .2572871
     3998 2015     .409129   .3290489    .11553278   .10464322
     3998 2016    .4354037   .4199662    .19333223  .033969022
     3998 2017    .4468606   .4847271    .13426812   .05140822
     3998 2018    .4743695     .45495    .07626183   .20373327
     3998 2019    .4099103  .36645475    .12567559   .09520283
     4024 2018    .4125189    .394467   .026686385           .
     4024 2019    .4504824   .4035377    .05246395  -.09097628
     4030 2016   .17944816  .14157945 -.0003805899           .
     4030 2017    .1738609  .08764988   .007434052    .3904321
     4030 2018   .03812203 .064700745  -.071587935   .13233668
     4030 2019   .07597651   .1156894    -.0385942   .18778832
     4253 2011    .8300624   .8171949    .09131072           .
     4253 2012     .794663   .8171949    .05564757  -.05502118
     4253 2013     .762911   .8171949     .1105419    .1615684
     4253 2014    .7336145   .8171949    .14773971  .071436204
     4253 2015     .674849   .8171949  -.031225424    .0270546
     4253 2016    .7137975   .8171949    .06298587  -.17491525
     4253 2017    .7916883   .8171949    .09623498   -.4737846
     4253 2018    .9276171   .8171949   .023376845  -.16493194
     4253 2019    1.276667   .8171949            .   -.4214988
     4671 2016    .3638019   .2761481  -.013762163           .
     4671 2017     .324754   .2852754     .1021458  .014223866
     4671 2018   .24909975   .2877043    .13253058   .06868943
     4671 2019    .1459749    .308847     .1335378    .1742925
     4709 2012    .6662203   .6266319    .12137921           .
     4709 2013    .6553847  .57591546    .11126392    .2181645
     4709 2014    .5561621   .5362483    .22304483   .15842493
     4709 2015   .54422885   .6040823    .11476488 -.020627577
     4709 2016    .5054402   .6772127    .07680175  -.03030659
     4709 2017    .4432106   .6758106     .1553518   .25886962
     4709 2018    .4445682   .6200479    .07567866 -.012173307
     4709 2019    .3930347   .5997105    .10580432   .14859356
     5003 2011   .10918014 .067195535    -.1498538           .
     5003 2012   .29134154   .1324779  -.008381018   .22241366
     5003 2013    .3004852   .1650631    .08418134   -.1807024
     5003 2014    .4097476   .1635043  -.005631727   .06136438
     5003 2015    .4219355  .14122625    .06564905   .15401855
     5003 2016    .5785052  .12588021    .03444713   .05206289
     5003 2017    .6178731   .0944237    .02023365 -.033344425
     5003 2018    .6006519   .0829053    .15445147 -.017999005
     5003 2019    .4547431  .04478376   .000997468   .12755749
     5284 2011  .018213866  .13102232    -.1010576           .
     5284 2012  .009815243  .13163972   .010969977    .4374999
     5284 2013   .01208981  .13356362 -.0011514105    .5177867
     5284 2014  .002744237  .12513721   -.05433589    .2369791
     5284 2015           .   .1036617  -.002578649   .25052634
     5284 2016  .002447381   .1977484     .1610377    .3619528
     5284 2017           .  .17095914    .04928952   .04697151
     5284 2018           .  .14962593  -.035743974  .031877268
     5284 2019  .013277693   .3118361   -.04666161  -.07551485
     5574 2011    .3480836  .34791905    .05428524           .
     5574 2012    .3784089  .44763595    .08859126   .11765777
     5574 2013   .39252335   .4043951    .02740591   .27299267
     5574 2014    .3991644   .3555488    .05839193    .3259429
     5574 2015    .4926058   .3930718    .04834897    .2213147
     5574 2016   .33564585   .3325015    .05280495    .3620269
     5574 2017    .3323925   .4069401    .02374232   .04540727
     5574 2018    .3418147   .4148635    .05816296    .0852675
     5574 2019    .3234833   .3989449    .07906775   .28092065
     5747 2011    .5204021  .26908726   .033249445           .
     5747 2012    .6293864   .3430454  .0043415455    .4871629
     5747 2013    .6302891  .44336635      .069693   .18247823
     5747 2014    .5998325   .5881558    .06856433    .1854033
     5747 2015    .6428508   .6448769   .065628156   .17358422
     5747 2016    .4589231  .25073498    .12238356   -.4735044
     5747 2017     .436603  .28550306    .01621231   .07667357
     5747 2018    .3116025   .1858569    .05198569  -.01696874
     5747 2019   .26978314  .20869975    .07715876   .12243346
     5757 2011    .6948834    .248067     .0539414           .
     5757 2012    .7510648     .30751    .01876402    .8895615
     5757 2013    .7640706  .53177357    .05485338    .6897347
     5757 2014    .7093325   .7449082    .05202026     1.30066
     5757 2015    .6998872   .7036348     .0908975   .21901853
     5757 2016    .6356643    .684512    .06319894   .34603485
     5757 2017    .6636555   .6877629    .05974928  -.10285632
     5757 2018    .7051849   .6931466    .06781821  -.09978237
     5757 2019    .6302482    .676382    .07526478    .1766577
     5838 2017    .1730994          .  -.007017544           .
     5838 2018   .12154696          .  -.025414364    1.244898
     5838 2019   .29709467          .      -.10403  -.52727276
     6584 2014           .   .1759436    .04661966           .
     6584 2015           .   .1658187    .09959914  -.00959966
     6584 2016  .006420786   .1776915    .04278035   .04078111
     6584 2017   .01701869   .1640328   .031530164   .01096856
     6584 2018    .0165893   .1560764     .0531923   .03746163
     6584 2019   .02165312  .13481045    .05877275   .22099447
     6585 2016       .3712      .1824            .           .
     6585 2017    .2507317        .52     .3346093    .1858407
     6585 2018    .0801282  .20352563    -.3121099 -.017910402
     6585 2019    .0673516  .25114155   -.06392694   .10638297
     6819 2011    .4224311   .3330956   .007585089           .
     6819 2013    .4634391   .2912299    .10310937           .
     6819 2014   .41481665  .28289443    .13677086   .08389007
     6819 2015    .2757323   .6763028     .1288173  -.06943109
     6819 2016   .22421573   .6315207      .206628    .3166479
     6819 2017   .09270376    .688632      .184104    .1264415
     6819 2018   .09099706   .6695513     .1580626   .17628655
     6819 2019   .04310589   .6096967     .1581862   .07187309
     6923 2013  .036216702   .3555073    .05436246           .
     6923 2014   .05898787  .24557114    .06654391  .018220207
     6923 2015  .001538993   .3057885  .0036747386   .04672977
     6923 2016 .0007068081  .26764217    .06067091   .05069383
     6923 2017   .08505154   .2234393  .0004295533   .08434212
     6923 2018   .17396885  .20319186   -.07876948   .05308232
     6923 2019   .13776949   .2279906     .1348017    .1045042
     7068 2011    .2255373   .4336084   .005005895           .
     7068 2012    .7127093  .08032516   -.04972092    1.466891
     7068 2013    .3287078  .29266456     .3346093   -.1084349
     7068 2014     .270276   .4778985    .09861256   .26408446
     7068 2015   .23166804  .48211685    .12995677   -.2216417
     7068 2016    .2082776   .5216338    .15304576    -.435073
     7068 2017   .14068018  .36748925    .06736894    .7755268
     7068 2018    .1372827    .579031      .095566   .21979836
     7068 2019    .0975527   .5428747     .2242033    .1722421
     7077 2011   .10389227   .3433261    .23245527           .
     7077 2012  .017583195  .41385415    .20946424  -.10656785
     7077 2013     .084119   .3831972   .013199246  -.02144102
     7077 2014    .0899088   .3787669    .10190325 .0003639672
     7077 2015    .1970248  .25454545   -.04181818  -.15655814
     7077 2016    .3171595  .20603964   -.09366153   .53256845
     7077 2017   .18523507   .5800278    .05884754 .0016043546
     7077 2018   .24368845   .5597058    .01153124 -.064409144
     7633 2013   .09921045  .27874687    .07949265           .
     7633 2014   .15525705  .22930136  -.006302178  -.56791306
     7633 2015    .1780412  .17021276   .074023396    .8443422
     7633 2016   .22957626  .16778368   -.13163535   .22928523
     7633 2017    .5346775  .14930987    .08845286   .25537586
     7633 2018    .4951785  .25245413     .3131383  .073266946
     7633 2019   .58521026  .20290634   -.11879278   -.1953571
     8183 2011           .   .1761822   -.15056667           .
     8183 2012           .   .2049998    .09631097 -.020935096
     8183 2013           .  .23560224    .05337045    .1179481
     8183 2014   .03893272   .3249325    .09123235 -.030428946
     8183 2015   .05951943   .3501657    .09422758  -.00829431
     8183 2016    .1848452   .3448189   -.03573223  .031699587
     8183 2017   .04137121   .4615638      .233529   .02830263
     8183 2018           .  .42928565     .1340962   .05503473
     8183 2019           .   .3720513    .06459869  .026408615
     8312 2011    .1763868  .17379667  -.014755018           .
     8312 2012   .21140324  .16629775  -.010693184   -.1752266
     8312 2013   .25428674  .14817181  -.009161734 -.007726851
     8312 2014    .2266215  .12879996    .01975407   -.3309977
     8312 2015   .16589355  .11615896    .08863278   .10346692
     8312 2016    .1230484   .1015561    .06620113    .1788599
     8312 2017  .072696775    .086017    .10198997    .1414302
     8312 2018   .02358453  .07827216    .06408186    .1542464
     8312 2019   .04078949  .06777557    .05722944   .06567483
     8523 2014  .024087144  .07042038    .17674133           .
     8523 2015  .025539907   .0912676  .0037558686   .17436044
     8523 2016 .0007068081  .06780822  -.004452055    -.419557
     8523 2017  .012088436  .11468108    .10831875  .033965785
     8523 2018  .017797846   .1888697    -.0114225   .11304883
     8523 2019  .007172038  .15152065    .09060372    .8392238
     8628 2017   .25019747   .3013428     -.192733           .
     8628 2018    .1524776   .5681978    .01728817   .28799444
     8628 2019   .11357084   .5739292    .06600082    .3025323
     8893 2011    .3596167   .4037388    .17990266           .
     8893 2012   .30688825   .3783531     .1176579    .3570038
     8893 2013    .1736542   .3791348     .3258868    .3768252
     8893 2014   .13743457   .2942589     .2237248    .2974286
     8893 2015   .06304603  .25093853     .2433866   .22018386
     8893 2016   .06197859   .3005768     .2174919    .1767114
     8893 2017  .003652219  .31597325     .3267636    .1437075
     8893 2018  .001664384   .4252501    .11356594   .07165918
     8893 2019   .01824345    .392895    .12594202  -.03296312
     9395 2011   .11527894  .05111475   -.17566568           .
     9395 2012    .3116961   .2571288    .11172533   .53606766
     9395 2013    .3572313  .19746792            .   .52544016
     9395 2014     .457702  .26060873 -.0010054614    .4435892
     9395 2015   .36436895  .22284608    .11592472   -.3819741
     9395 2016    .3786785   .2689725    .18334247  -.24169537
     9395 2017    .3189563  .17134063    .08574134  -.19534147
     9395 2018    .3941053  .10244358  -.026210876  -.53725356
     9395 2019    .3029013  .04506692    .08439115    .6438882
     9505 2016     .152146   .1488664    .23484957           .
     9505 2017   .06109492  .12531224    .04964613   .28230104
     9505 2018    .1964527  .10190892   -.18758455    .4303546
     9505 2019     .163536  .07547297 -.0082811555  -.42026055
     9793 2011   .21299487  .28313547   -.22727828           .
     9793 2012    .2090286   .2395759    .14652154   1.0828497
     9793 2013   .16243246  .19548473  -.008869908  -.07691464
     9793 2014   .22626795  .16880143   .009572013  -.05456925
     9793 2015    .2123294  .18939278    .04043563   .49040115
     9793 2016   .15408486   .1600095    .05747928   .25603876
     9793 2017    .1957748  .15506345    .10892046   .08424038
     9793 2018    .2839797  .26066253   .027858667   .26903573
     9793 2019    .3059011  .24024113    .08634496  -.13823473
    10714 2011    .3242179   .4018814    .12119886           .
    10714 2012    .3694196   .4118304    .05022321  -.08740239
    10714 2013    .3186611   .4636268      .170796   .14660251
    10714 2014   .22189525  .47969395     .0985874    .2188521
    10714 2015    .1945914   .4244562      .058495  .007656967
    10714 2016   .27926573   .3969305   -.02888956  .013297872
    10714 2017    .1778991   .5967621   -.04951054  -.03787029
    10714 2018   .11722489   .4629187 .00014952154    .8024161
    10714 2019   .11691818   .4826052  -.026846703    .3995675
    10735 2018   .56434965  .01147052    -.2837807           .
    10735 2019    .4761131 .007799805   -.04029899    .1811359
    10867 2018    .0938887 .005804029   -.11027654           .
    10867 2019    .1117432 .002844372    -.3063795           .
    10884 2015   .24478763   .2576126    .06100572           .
    10884 2016    .1184179   .2610669    .13072436   .32687995
    10884 2017    .0985217   .2684734   .070385665    .1563039
    10884 2018   .12456716   .2851561   .033220906   .12491638
    10884 2019   .10957008   .2936864    .09048726    .6531112
    10903 2011    .4359254   .3555144    .08894213           .
    10903 2012    .4086082   .4047706    .11770933   .22337973
    10903 2013    .3936641   .3400377    .06047452   .26664123
    10903 2014    .3441462   .3536265    .10754997    .2224479
    end

    Code:
    **For Classical DID
    *Treatment group based on wealth
    bysort entity (year): egen avg_weal=mean( wealth) if inrange(year,2011,2015) // considering year till 2015 only
    bysort entity (year): egen max_avg_weal=max(avg_weal )
    xtile tercile=max_avg_weal, nq(3)
    gen treat=1 if tercile==3
    replace treat=0 if tercile==1
    ** Time dummy
    gen time_dum=1 if year>2016
    replace time_dum=0 if year<2017
    **Setting the panel
    xtset entity year
    Code:
     *Running DiD
    . xtreg borrowings treat##time_dum contro1 contro2,fe vce(robust)
    note: 1.treat omitted because of collinearity.
    
    Fixed-effects (within) regression               Number of obs     =        147
    Group variable: entity                          Number of groups  =         21
    
    R-squared:                                      Obs per group:
         Within  = 0.2162                                         min =          4
         Between = 0.2142                                         avg =        7.0
         Overall = 0.0121                                         max =          8
    
                                                    F(4,20)           =      16.24
    corr(u_i, Xb) = -0.3319                         Prob > F          =     0.0000
    
                                      (Std. err. adjusted for 21 clusters in entity)
    --------------------------------------------------------------------------------
                   |               Robust
        borrowings | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    ---------------+----------------------------------------------------------------
           1.treat |          0  (omitted)
        1.time_dum |   .0364757   .0405352     0.90   0.379    -.0480793    .1210307
                   |
    treat#time_dum |
              1 1  |  -.1493665   .0572354    -2.61   0.017    -.2687576   -.0299755
                   |
           contro1 |  -.0110076   .0712315    -0.15   0.879     -.159594    .1375788
           contro2 |  -.0205239   .0143762    -1.43   0.169    -.0505121    .0094643
             _cons |   .3411113   .0143873    23.71   0.000     .3111001    .3711226
    ---------------+----------------------------------------------------------------
           sigma_u |   .2453684
           sigma_e |   .0864247
               rho |  .88963071   (fraction of variance due to u_i)
    --------------------------------------------------------------------------------
    
    
    
    . **Running Panel Regression
    . xtreg borrowings time_dum##c.wealth contro1 contro2,fe vce(robust)
    
    Fixed-effects (within) regression               Number of obs     =        239
    Group variable: entity                          Number of groups  =         42
    
    R-squared:                                      Obs per group:
         Within  = 0.0905                                         min =          1
         Between = 0.2895                                         avg =        5.7
         Overall = 0.1388                                         max =          8
    
                                                    F(5,41)           =       1.10
    corr(u_i, Xb) = 0.2677                          Prob > F          =     0.3728
    
                                         (Std. err. adjusted for 42 clusters in entity)
    -----------------------------------------------------------------------------------
                      |               Robust
           borrowings | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    ------------------+----------------------------------------------------------------
           1.time_dum |  -.0052656   .0575536    -0.09   0.928    -.1214975    .1109664
               wealth |   .1133002   .2026015     0.56   0.579    -.2958618    .5224622
                      |
    time_dum#c.wealth |
                   1  |  -.1294753    .145374    -0.89   0.378    -.4230642    .1641135
                      |
              contro1 |  -.1193711   .1043477    -1.14   0.259    -.3301056    .0913634
              contro2 |   .0095745    .030367     0.32   0.754    -.0517528    .0709019
                _cons |   .2812199   .0701817     4.01   0.000     .1394851    .4229547
    ------------------+----------------------------------------------------------------
              sigma_u |  .18978849
              sigma_e |  .09432048
                  rho |  .80193364   (fraction of variance due to u_i)
    ---------------------------------------------------------------------------------
    --





    As far as I understood the interpretation of DID involves, 14.93% change in dependent variable of those entities that has highest wealth relative to those entities with lower wealth in the post-period.
    In panel regression, it means as the wealth increases in the post_period, then borrowings get reduced by 12.94%.
    But what is that intuition of the difference in models? For instance treatment and control groups are created based on wealth and both implies that as wealth increases, borrowings decrease. But how EXACTLY IS MODEL 1 (DiD) different from Panel regression.

  • #2
    In DiD, and that is part of what makes the model's strength, interpretation of the DiD coefficient is always relative to control. Your model 1, the DiD, implies that the reception of treatment reduced borrowings for the treatment group relative to the control group. In the second model, your interaction term is not the interaction of post and treated, but the interaction of post and the continuous variable wealth. This does not give you the relative effect of treatment on your dependent variable (i.e. borrowings).

    What this interaction (in equation 2) does do is that it allows wealth to have a different effect on borrowings from 2017 onwards (the year your treatment was implementated).

    Note that the DiD model also counts as a panel data regression.

    Comment


    • #3
      Neelakanda Krishna before we get to interpretations, can you tell me what the specific intervention of interest is and what outcome you're studying? Like what's the context, what units are we talking about? I ask, because your code for both regressions confuses me, and once I have a good idea about what's being studied, then it'll be more apparent about what model you should choose/the technical differences.

      Comment


      • #4
        Dear Maxence Morlet, thanks for the wonderful explanation. So in the case of equation 2, interaction implies, post the implementation of act/law, an increase in wealth is associated with a decrease in borrowings, right? Can we get the economic implication like post the implementation, how much an increase in additional wealth contributed to the decline in borrowings?


        Thanks Jared Greathouse for taking the time to answer my question.

        can you tell me what the specific intervention of interest is and what outcome you're studying? Like what's the context, what units are we talking about? I ask, because your code for both regressions confuses me, and once I have a good idea about what's being studied, then it'll be more apparent about what model you should choose/the technical differences.
        A certain law enacted in 2017 (and continues presently, hence 2017-19) discourages borrowings by entities (households) with high levels of wealth. So I considered wealth during the period 2011-15 of entities, calculated their average during this period. Classified them into terciles and then classified low wealth people if they fall in the top 3 terciles and high wealth people if they fall in bottom 3 deciles. Such classification is done based on literature. I ignored the year 2016 since there would have been some news about the law in the year though it was passed in 2017.
        So treatment group comprises of those entities who falls in the bottom deciles based on their average wealth during the period 2011-16 and control group comprises those entities who falls in the top deciles based on their avg wealth during the period 2011-2016.
        In the first case I tried to do a Diff-an-Diff with this info. In second case I interacted wealth with time dummy (0 for 2011-16 & 1 for 2017-19).

        Comment


        • #5
          No worries, happy to help. You are correct: in equation 2, post implementation, an increase in wealth decreases borrowing as the sign is negative. However this interaction term is insignificant, so you have insufficient evidence to draw this conclusion. Try typing
          Code:
          help margins
          . I think margins is the command you're looking for to answer your second question.

          Comment


          • #6
            Thanks Maxence Morlet for helping me. I really appreciate your kindness. Yes margins make sense

            Comment

            Working...
            X