Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Factor analysis

    Hello everyone,

    I have recently conducted a validation study on a 7-item survey. For the factor analysis, I have used the factortest command with the following results

    factortest fgsis_s_01 fgsis_s_02 fgsis_s_03 fgsis_s_04 fgsis_s_05 fgsis_s_06 fgsis_s_07

    Determinant of the correlation matrix
    Det = 0.030


    Bartlett test of sphericity

    Chi-square = 685.883
    Degrees of freedom = 21
    p-value = 0.000
    H0: variables are not intercorrelated


    Kaiser-Meyer-Olkin Measure of Sampling Adequacy
    KMO = 0.847



    Afterwrads I have conducted FACTOR ANALYSIS
    factor fgsis_s_01 fgsis_s_02 fgsis_s_03 fgsis_s_04 fgsis_s_05 fgsis_s_06 fgsis_s_07, pcf


    Factor analysis/correlation Number of obs = 200
    Method: principal-component factors Retained factors = 1
    Rotation: (unrotated) Number of params = 7

    --------------------------------------------------------------------------
    Factor | Eigenvalue Difference Proportion Cumulative
    -------------+------------------------------------------------------------
    Factor1 | 3.86248 3.03265 0.5518 0.5518
    Factor2 | 0.82983 0.10172 0.1185 0.6703
    Factor3 | 0.72811 0.06234 0.1040 0.7743
    Factor4 | 0.66577 0.19947 0.0951 0.8695
    Factor5 | 0.46630 0.15041 0.0666 0.9361
    Factor6 | 0.31589 0.18426 0.0451 0.9812
    Factor7 | 0.13163 . 0.0188 1.0000
    --------------------------------------------------------------------------
    LR test: independent vs. saturated: chi2(21) = 689.39 Prob>chi2 = 0.0000

    Factor loadings (pattern matrix) and unique variances

    ---------------------------------------
    Variable | Factor1 | Uniqueness
    -------------+----------+--------------
    fgsis_s_01 | 0.8639 | 0.2536
    fgsis_s_02 | 0.8678 | 0.2469
    fgsis_s_03 | 0.7614 | 0.4202
    fgsis_s_04 | 0.5869 | 0.6555
    fgsis_s_05 | 0.6471 | 0.5812
    fgsis_s_06 | 0.5569 | 0.6898
    fgsis_s_07 | 0.8425 | 0.2902
    ---------------------------------------


    Given these findings can we asume that the measure is an unrestricted one factor solution? Or should I undergo a maximum likelihood or principal axis factoring?

    Thanks!!
Working...
X