Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Opposite signs of average marginal effects after probit

    Hello everyone

    A probit regression generated the following output


    Probit regression Number of obs = 984
    LR chi2(8) = 244.09
    Prob > chi2 = 0.0000
    Log likelihood = -559.84938 Pseudo R2 = 0.1790


    account Coef. Std. Err. z P>z [95% Conf. Interval]

    female
    Female .3697763 .0875213 4.22 0.000 .1982378 .5413148
    age -.0329384 .0104788 -3.14 0.002 -.0534765 -.0124002

    c.age#c.age .0003704 .0001142 3.25 0.001 .0001467 .0005942

    educ
    secondary -.9238785 .1031009 -8.96 0.000 -1.125953 -.7218045
    (dk) 0 (empty)
    (rf) 0 (empty)

    inc_q
    Poorest 20% 1.03113 .14691 7.02 0.000 .7431919 1.319068
    Second 20% .7203338 .1374601 5.24 0.000 .450917 .9897505
    Middle 20% .5281499 .1324182 3.99 0.000 .2686149 .7876849
    Fourth 20% .598695 .1247253 4.80 0.000 .3542378 .8431521
    Richest 20% 0 (omitted)

    _cons .2244745 .2359353 0.95 0.341 -.2379502 .6868992


    after margins , dydx(_all)

    I obtain this

    ------------------------------------------------------------------------------
    | Delta-method
    | dy/dx Std. Err. z P>|z| [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    female |
    Female | .1209884 .028537 4.24 0.000 .065057 .1769198
    age | -.0024337 .0011359 -2.14 0.032 -.00466 -.0002073
    |
    educ |
    secondary | -.3247773 .0347708 -9.34 0.000 -.3929269 -.2566277
    (dk) | . (not estimable)
    (rf) | . (not estimable)
    |
    inc_q |
    Poorest 20% | 0 (omitted)
    Second 20% | -.1029302 .0510511 -2.02 0.044 -.2029885 -.0028719
    Middle 20% | -.1702077 .0505627 -3.37 0.001 -.2693088 -.0711065
    Fourth 20% | -.1453447 .0489363 -2.97 0.003 -.2412581 -.0494312
    Richest 20% | -.3522531 .0481034 -7.32 0.000 -.4465339 -.2579722
    ------------------------------------------------------------------------------
    Note: dy/dx for factor levels is the discrete change from the base level.

    my concern is the opposite signs obtained on the categorical variable inc_q after margins , dydx(_all)

    Can someone help? Is this normal?


  • #2
    Hi Sergio. First, your output would be much easier to read if you used code tags. See the Statalist FAQ if you don't know how to do that.

    It might also be helpful to see the actual probit command.

    Second, I'm not seeing any contradiction. In the probit, the largest coefficient is for Poorest 20%. Therefore, with that as the reference category, the ME for every other outcome will be less likely than that.
    -------------------------------------------
    Richard Williams, Notre Dame Dept of Sociology
    StataNow Version: 19.5 MP (2 processor)

    EMAIL: [email protected]
    WWW: https://www3.nd.edu/~rwilliam

    Comment


    • #3
      Thanks Richard

      I have gone through the Statalist FAQ as suggested and I hope now is readable


      Code:
      Probit regression                                 Number of obs   =        984
                                                        LR chi2(8)      =     244.09
                                                        Prob > chi2     =     0.0000
      Log likelihood = -559.84938                       Pseudo R2       =     0.1790
      
      ------------------------------------------------------------------------------
           account |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
      -------------+----------------------------------------------------------------
            female |
           Female  |   .3697763   .0875213     4.22   0.000     .1982378    .5413148
               age |  -.0329384   .0104788    -3.14   0.002    -.0534765   -.0124002
                   |
       c.age#c.age |   .0003704   .0001142     3.25   0.001     .0001467    .0005942
                   |
              educ |
        secondary  |  -.9238785   .1031009    -8.96   0.000    -1.125953   -.7218045
             (dk)  |          0  (empty)
             (rf)  |          0  (empty)
                   |
             inc_q |
      Poorest 20%  |    1.03113     .14691     7.02   0.000     .7431919    1.319068
       Second 20%  |   .7203338   .1374601     5.24   0.000      .450917    .9897505
       Middle 20%  |   .5281499   .1324182     3.99   0.000     .2686149    .7876849
       Fourth 20%  |    .598695   .1247253     4.80   0.000     .3542378    .8431521
      Richest 20%  |          0  (omitted)
                   |
             _cons |   .2244745   .2359353     0.95   0.341    -.2379502    .6868992
      ------------------------------------------------------------------------------
      the probit command is

      Code:
      probit account i.female age c.age#c.age  i.educ ibn.inc_q
      after margins , dydx(_all)

      I obtained the following margins

      Code:
      Average marginal effects                          Number of obs   =        984
      Model VCE    : OIM
      
      Expression   : Pr(account), predict()
      dy/dx w.r.t. : 2.female age 2.educ 4.educ 5.educ 1.inc_q 2.inc_q 3.inc_q 4.inc_q 5.inc_q
      
      ------------------------------------------------------------------------------
                   |            Delta-method
                   |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
      -------------+----------------------------------------------------------------
            female |
           Female  |   .1209884    .028537     4.24   0.000      .065057    .1769198
               age |  -.0024337   .0011359    -2.14   0.032      -.00466   -.0002073
                   |
              educ |
        secondary  |  -.3247773   .0347708    -9.34   0.000    -.3929269   -.2566277
             (dk)  |          .  (not estimable)
             (rf)  |          .  (not estimable)
                   |
             inc_q |
      Poorest 20%  |          0  (omitted)
       Second 20%  |  -.1029302   .0510511    -2.02   0.044    -.2029885   -.0028719
       Middle 20%  |  -.1702077   .0505627    -3.37   0.001    -.2693088   -.0711065
       Fourth 20%  |  -.1453447   .0489363    -2.97   0.003    -.2412581   -.0494312
      Richest 20%  |  -.3522531   .0481034    -7.32   0.000    -.4465339   -.2579722
      ------------------------------------------------------------------------------
      Note: dy/dx for factor levels is the discrete change from the base level.
      Now, when you look at the factor levels there are negative signs but the coefficients in the probit output are positives. Is it right?
      Last edited by Sergio Ponguane; 13 Sep 2021, 16:38.

      Comment


      • #4
        Thanks Sergio. I think part of the confusion comes from having different reference categories in the probit part and in the margins. I suggest you change the probit part to

        i.inc_q

        You should then see negative signs in both the probit and the margins.
        -------------------------------------------
        Richard Williams, Notre Dame Dept of Sociology
        StataNow Version: 19.5 MP (2 processor)

        EMAIL: [email protected]
        WWW: https://www3.nd.edu/~rwilliam

        Comment


        • #5
          Many thanks Richard

          That was the case. Now I see negative signs in both the probit and the margins

          Comment

          Working...
          X