Hello,
I am using the Synthetic Control Method (synth) developed by Abadie Aberto et. al. I would like to express the effect of the policy as a percentage.
The following is my data:
I am aware that to estimate the actual (absolute) treatment effect, we do:
However, I am not sure whether divide the "effect" by the _Y_synthetic as below:
Or perhaps divide the effect by the _Y_treated as below:
Please help clarify lest I mess up.
I am using the Synthetic Control Method (synth) developed by Abadie Aberto et. al. I would like to express the effect of the policy as a percentage.
The following is my data:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input byte index str3 isocode int year float prgdp 1 "AUS" 2000 41.45803 1 "AUS" 2001 42.6604 1 "AUS" 2002 43.46615 1 "AUS" 2003 44.71541 1 "AUS" 2004 45.55513 1 "AUS" 2005 46.13455 1 "AUS" 2006 47.0964 1 "AUS" 2007 47.9088 1 "AUS" 2008 47.88457 1 "AUS" 2009 47.93401 1 "AUS" 2010 48.21926 1 "AUS" 2011 49.25634 1 "AUS" 2012 49.72223 1 "AUS" 2013 50.21233 1 "AUS" 2014 50.57065 1 "AUS" 2015 51.24196 1 "AUS" 2016 51.7074 1 "AUS" 2017 52.53539 1 "AUS" 2018 52.9948 1 "AUS" 2019 52.20425 2 "KOR" 2000 22.61658 2 "KOR" 2001 23.551487 2 "KOR" 2002 25.21583 2 "KOR" 2003 25.868595 2 "KOR" 2004 27.08259 2 "KOR" 2005 28.12902 2 "KOR" 2006 29.50116 2 "KOR" 2007 31.11384 2 "KOR" 2008 31.95508 2 "KOR" 2009 32.10069 2 "KOR" 2010 34.14795 2 "KOR" 2011 35.235477 2 "KOR" 2012 35.884182 2 "KOR" 2013 36.810196 2 "KOR" 2014 37.792206 2 "KOR" 2015 38.68932 2 "KOR" 2016 39.70417 2 "KOR" 2017 40.86813 2 "KOR" 2018 41.99446 2 "KOR" 2019 42.80603 3 "CAN" 2000 42.17812 3 "CAN" 2001 42.52756 3 "CAN" 2002 43.39205 3 "CAN" 2003 43.73918 3 "CAN" 2004 44.62534 3 "CAN" 2005 45.55576 3 "CAN" 2006 46.2203 3 "CAN" 2007 46.61373 3 "CAN" 2008 46.50728 3 "CAN" 2009 44.60006 3 "CAN" 2010 45.4376 3 "CAN" 2011 46.33575 3 "CAN" 2012 46.63475 3 "CAN" 2013 47.21461 3 "CAN" 2014 48.06879 3 "CAN" 2015 47.899 3 "CAN" 2016 47.90493 3 "CAN" 2017 48.89198 3 "CAN" 2018 49.61724 3 "CAN" 2019 50.08624 4 "ISR" 2000 30.907154 4 "ISR" 2001 30.37002 4 "ISR" 2002 29.78265 4 "ISR" 2003 29.58852 4 "ISR" 2004 30.46429 4 "ISR" 2005 31.08056 4 "ISR" 2006 32.132683 4 "ISR" 2007 33.252167 4 "ISR" 2008 33.510857 4 "ISR" 2009 33.05777 4 "ISR" 2010 34.158024 4 "ISR" 2011 35.15149 4 "ISR" 2012 35.380398 4 "ISR" 2013 36.31908 4 "ISR" 2014 37.118385 4 "ISR" 2015 37.38509 4 "ISR" 2016 38.24815 4 "ISR" 2017 38.96732 4 "ISR" 2018 39.64619 4 "ISR" 2019 40.37104 5 "CHL" 2000 14.743486 5 "CHL" 2001 15.070696 5 "CHL" 2002 15.234614 5 "CHL" 2003 15.6445 5 "CHL" 2004 16.569315 5 "CHL" 2005 17.41039 5 "CHL" 2006 18.315748 5 "CHL" 2007 19.0101 5 "CHL" 2008 19.471315 5 "CHL" 2009 18.964655 5 "CHL" 2010 19.86565 5 "CHL" 2011 20.870377 5 "CHL" 2012 21.76971 5 "CHL" 2013 22.42965 5 "CHL" 2014 22.58499 5 "CHL" 2015 22.83477 5 "CHL" 2016 22.919737 5 "CHL" 2017 22.86397 5 "CHL" 2018 23.438625 5 "CHL" 2019 23.407227 end
synth prgdp prgdp(2000) prgdp(2002) prgdp(2005) prgdp(2010) prgdp(2012), trunit(5) trperiod(2014) fig keep(trial_prgdp, replace)
use trial_prgdp.dta, clear
gen effect= _Y_treated - _Y_synthetic
gen percentage_change = 100*(effect/_Y_synthetic)
gen percentage_change = 100*(effect/_Y_treated)
Comment