I have 5 possible independent categorical variables in a logistic regression. When each variable is regressed separately they are significantly related to m, the dependent variable. However when I include them all in the regression none of the variables are significant. If they were continous variables then I would look for problems with collinearity but I am not sure how to proceed or interpret the results with categorical variables.
I would be grateful for any pointers.
Thank you.
Eddy
[CODE]. dataex
----------------------- copy starting from the next line -----------------------
------------------ copy up to and including the previous line ------------------
I would be grateful for any pointers.
Thank you.
Eddy
Code:
. logistic m i.a . testparm i.a chi2( 3) = 18.01 Prob > chi2 = 0.0004 . testparm i.b chi2( 2) = 8.96 Prob > chi2 = 0.0113 . logistic m i.c . testparm i.c chi2( 3) = 22.19 Prob > chi2 = 0.0001 . logistic m i.d . testparm i.d chi2( 3) = 17.31 Prob > chi2 = 0.0006 . logistic m i.e . logistic m i.a i.b i.c i.d i.e note: 3.d != 0 predicts failure perfectly; 3.d omitted and 3 obs not used. . testparm i.a chi2( 3) = 2.60 Prob > chi2 = 0.4573 . testparm i.b chi2( 2) = 3.31 Prob > chi2 = 0.1914 . testparm i.c chi2( 3) = 5.09 Prob > chi2 = 0.1654 . testparm i.d chi2( 3) = 2.61 Prob > chi2 = 0.4554 . testparm i.e chi2( 2) = 0.11 Prob > chi2 = 0.9454
----------------------- copy starting from the next line -----------------------
Code:
* Example generated by -dataex-. For more info, type help dataex clear input byte(id rater m sex a b c d e f) 1 1 0 2 1 1 2 1 1 0 2 1 1 2 4 1 3 5 1 0 3 1 1 2 2 3 3 4 1 1 4 1 1 2 3 3 3 5 1 0 5 1 1 2 2 1 2 4 1 0 6 1 1 2 4 3 3 5 1 0 7 1 0 2 1 1 2 1 2 0 8 1 0 2 1 1 2 2 2 0 9 1 0 2 1 2 3 3 1 1 10 1 1 2 4 2 4 5 1 0 11 1 1 2 3 3 3 4 1 1 12 1 1 2 4 1 3 5 1 0 13 1 0 2 3 2 2 2 1 0 14 1 1 2 2 2 3 4 1 0 15 1 1 2 4 1 3 5 1 0 16 1 1 2 4 2 4 5 1 0 17 1 1 2 4 1 3 5 3 0 18 1 0 2 1 1 2 2 2 0 19 1 0 2 2 1 2 2 2 0 20 1 1 2 4 2 3 5 3 0 21 1 1 1 4 3 2 5 2 0 22 1 0 2 1 1 2 2 1 0 23 1 0 2 1 1 2 2 1 0 24 1 1 2 4 2 3 4 1 0 25 1 1 1 4 1 4 4 1 1 26 1 0 1 1 1 2 1 1 0 27 1 0 1 1 1 1 2 1 0 28 1 1 1 1 1 1 2 3 0 29 1 1 2 3 2 3 4 3 0 30 1 1 1 4 2 4 5 1 0 31 1 1 1 4 2 4 5 1 0 32 1 0 1 1 1 2 1 1 0 33 1 0 2 1 1 1 1 3 0 34 1 1 2 1 1 1 2 1 0 35 1 0 2 1 1 2 1 3 0 36 1 0 2 1 1 2 1 3 0 37 1 1 2 3 2 2 1 1 0 38 1 1 2 4 2 4 5 1 0 39 1 0 1 1 1 1 1 1 0 40 1 1 2 4 1 4 5 1 1 41 1 0 2 3 2 2 3 1 0 42 1 0 2 3 1 2 4 1 0 43 1 1 1 4 2 4 5 1 0 44 1 1 2 2 3 3 5 1 0 45 1 1 1 4 2 3 4 1 0 46 1 0 2 4 2 2 3 3 0 47 1 1 2 3 1 3 5 1 0 48 1 1 1 4 2 3 5 1 0 49 1 0 2 1 1 2 1 1 0 50 1 1 1 4 2 4 4 1 0 51 1 1 1 4 2 3 5 1 0 52 1 1 1 4 3 3 5 1 0 53 1 0 1 1 3 2 4 1 0 54 1 0 2 2 1 2 4 3 0 55 1 1 2 4 2 4 5 1 1 56 1 0 1 2 2 3 2 1 0 57 1 0 2 2 1 3 4 1 0 58 1 1 1 1 3 3 2 1 0 59 1 0 2 2 1 3 1 3 1 60 1 1 1 4 2 4 5 1 0 61 1 1 2 3 1 3 4 1 0 62 1 0 2 1 1 1 2 1 0 63 1 0 2 4 2 4 5 1 0 64 1 0 1 4 2 3 4 1 0 65 1 1 1 2 3 2 4 1 0 66 1 1 1 4 1 3 5 1 0 67 1 1 1 3 2 3 4 1 0 68 1 1 2 4 2 3 4 2 0 69 1 1 2 4 3 4 5 3 1 70 1 1 1 1 3 3 4 1 0 71 1 1 2 2 3 3 1 1 0 72 1 1 1 4 1 3 5 3 0 73 1 1 1 1 1 1 2 1 0 74 1 1 2 1 1 3 1 1 1 75 1 1 2 4 1 4 5 1 0 76 1 1 2 2 2 2 2 1 0 77 1 0 2 4 2 3 4 1 0 end
Comment