Hi all, I am using panel data with fixed effect. In checking the robustness of my results, I estimate my model with two specifications. I am wondering which of the two is most intuitive/informative to use (i should only choose one).
1.
2.
As you see, the first model includes county and state by year effects. The second only state by year.
The results are as following:
1
2
How should i interpret both specifications. To my understanding, in the first specification, I control for effects that happen within a certain county and also for state effects that occur during my sample period. The second only does the latter, but excludes potential effects on county level. Is it right that, by choosing the first specification, I control for more within variation? And is that a good thing?
1.
Code:
reghdfe Y X1 Z1 Z2, absorb(county state#year) vce(cluster PERMCO)
Code:
reghdfe Y X1 Z1 Z2, absorb(state#year) vce(cluster PERMCO)
The results are as following:
1
Code:
HDFE Linear regression Number of obs = 106,089 Absorbing 2 HDFE groups F( 11, 11820) = 1126.78 Statistics robust to heteroskedasticity Prob > F = 0.0000 R-squared = 0.5108 Adj R-squared = 0.5003 Within R-sq. = 0.4693 Number of clusters (PERMCO) = 11,821 Root MSE = 0.1999 (Std. Err. adjusted for 11,821 clusters in PERMCO) ------------------------------------------------------------------------------ | Robust ROA | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- prot_perc | .0820807 .0518339 1.58 0.113 -.0195222 .1836836 totpop | -2.56e-08 1.17e-08 -2.18 0.029 -4.87e-08 -2.63e-09 Edu | -.1081303 .0907921 -1.19 0.234 -.2860978 .0698373 Male | -.1102668 .243603 -0.45 0.651 -.5877688 .3672351 Money | 3.07e-07 3.10e-07 0.99 0.322 -3.00e-07 9.14e-07 Minority | -.0183953 .0502177 -0.37 0.714 -.1168302 .0800396 Married | -.006168 .0604787 -0.10 0.919 -.1247162 .1123802 | Size_w | L1. | .029529 .0007727 38.22 0.000 .0280144 .0310435 | Liquidity_w | .0386051 .000815 47.37 0.000 .0370075 .0402028 | Loss | D1. | -.0630033 .001485 -42.43 0.000 -.0659142 -.0600924 | Leverage_w | -.1230631 .0038557 -31.92 0.000 -.1306209 -.1155053 _cons | -.0133236 .138057 -0.10 0.923 -.2839381 .2572909
Code:
HDFE Linear regression Number of obs = 106,308 Absorbing 1 HDFE group F( 11, 11852) = 1139.66 Statistics robust to heteroskedasticity Prob > F = 0.0000 R-squared = 0.4992 Adj R-squared = 0.4923 Within R-sq. = 0.4755 Number of clusters (PERMCO) = 11,853 Root MSE = 0.2013 (Std. Err. adjusted for 11,853 clusters in PERMCO) ------------------------------------------------------------------------------ | Robust ROA | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- prot_perc | .0100529 .0164292 0.61 0.541 -.0221511 .0422568 totpop | 9.15e-10 9.00e-10 1.02 0.309 -8.49e-10 2.68e-09 Edu | -.1176459 .0235673 -4.99 0.000 -.1638417 -.0714502 Male | -.0226447 .0866049 -0.26 0.794 -.1924045 .147115 Money | 1.75e-07 2.38e-07 0.73 0.463 -2.92e-07 6.42e-07 Minority | -.0509284 .0155635 -3.27 0.001 -.0814354 -.0204215 Married | .0278872 .0392895 0.71 0.478 -.0491267 .1049011 | Size_w | L1. | .0291427 .0007839 37.18 0.000 .0276062 .0306793 | Liquidity_w | .0389049 .0008103 48.01 0.000 .0373166 .0404932 | Loss | D1. | -.0633705 .0014821 -42.76 0.000 -.0662757 -.0604653 | Leverage_w | -.1229857 .0037679 -32.64 0.000 -.1303714 -.1156 _cons | -.0792589 .0484973 -1.63 0.102 -.1743215 .0158037 ------------------------------------------------------------------------------
Comment