Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Question - Confidence interval of a quotient by Fieller's method (for unpaired data)

    Dear Statalisters,


    After a couple of failed attempts I am again seeking a help regarding Confidence interval of a quotient by Fieller's method. I tried to replicate the community-contributed module, however the nature of the example from the attached link (http://fmwww.bc.edu/RePEc/bocode/f/fieller.html) is completely different. Therefore I failed to reproduce a meaningful/logical results. To be more precise, I would like to display my dataset and the way a treat the data in order to find our the Confidence interval of a quotient by Fieller's method.

    I use a credit risk as a dependent variable and the direct (adjusted lerner) and the squared term (of adjusted lerner) as explanatory variables. I managed to find the turning point by running a random-effects negative binomial model (supported by a Hausman test - xtnberg). Please see below my results:

    Code:
    xtnbreg llrgl car adjlerner adjlerner2 insitution ownership_concentration cir deposit_asset loan_asset otherearningassets incomediversity size tier1 fundingragility luqidasset logz gdp_growth inflation crisis_d listed_d, fe 
    Followed by
    Code:
    utest  adjlerner adjlerner2, prefix(llrgl)
    And the results are the following:
    Code:
    Conditional FE negative binomial regression     Number of obs      =      3124
    Group variable: y                               Number of groups   =        14
    
                                                    Obs per group: min =       223
                                                                   avg =     223.1
                                                                   max =       225
    
                                                    Wald chi2(19)      =     95.47
    Log likelihood  = -481.71589                    Prob > chi2        =    0.0000
    
    ------------------------------------------------------------------------------
           CreditRisk |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
             car |   .0480899   .3682911     0.13   0.896    -.6737474    .7699271
       adjlerner |  -5.870174   1.569279    -3.74   0.000    -8.945904   -2.794444
      adjlerner2 |   7.036934   1.943191     3.62   0.000      3.22835    10.84552
      insitution |  -.1541609   .1247337    -1.24   0.216    -.3986344    .0903125
    ownership~on |   .0115567   .2493661     0.05   0.963    -.4771918    .5003052
             cir |   .0020299    .002605     0.78   0.436    -.0030758    .0071356
    deposit_as~t |    .686342   .4698969     1.46   0.144    -.2346389    1.607323
      loan_asset |  -2.129252   .5312894    -4.01   0.000     -3.17056   -1.087944
    otherearni~s |    .216634    .346283     0.63   0.532    -.4620682    .8953361
    incomedive~y |    .142058   .1615877     0.88   0.379     -.174648     .458764
            size |   .0747654    .039163     1.91   0.056    -.0019926    .1515234
           tier1 |   .0816059   .2788698     0.29   0.770     -.464969    .6281807
    fundingrag~y |   .0959053   .4705931     0.20   0.839    -.8264402    1.018251
      luqidasset |    .860141   .4811945     1.79   0.074     -.082983    1.803265
            logz |   .0032852   .0652955     0.05   0.960    -.1246917    .1312621
      gdp_growth |  -5.295671   1.911873    -2.77   0.006    -9.042874   -1.548468
       inflation |   -.130405   1.155299    -0.11   0.910     -2.39475     2.13394
        crisis_d |   .0278075   1.120135     0.02   0.980    -2.167616    2.223231
        listed_d |    .356337   .1745903     2.04   0.041     .0141463    .6985277
           _cons |   13.40707   203.6382     0.07   0.948    -385.7164    412.5306
    ------------------------------------------------------------------------------
    
    . utest  adjlerner adjlerner2, prefix(llrgl)
    (325 missing values generated)
    
    Specification: f(x)=x^2
    Extreme point:  .4170974
    
    Test:
         H1: U shape
     vs. H0: Monotone or Inverse U shape 
    
    -------------------------------------------------
                     |   Lower bound      Upper bound
    -----------------+-------------------------------
    Interval         |   -.1606019         .9939588
    Slope            |   -8.130464          8.11867
    t-value          |   -3.729346          3.42437
    P>|t|            |    .0000977         .0003121
    -------------------------------------------------
    
    Overall test of presence of a U shape:
         t-value =      3.42
         P>|t|   =   .000312
    
    .

    Code:
    bysort when: fieller bp, by(sex) level(90)
    In my case I suppose that blood pressure (bp) should be replicated with credit risk, however I am not quite sure what is the logic of
    Code:
    by(sex)
    .
    I tried to replicate the command by using my own logic and got the following results:

    Code:
    . fieller  CreditRisk, by(banks) level(95)
    Confidence Interval for a Quotient by Fieller's Method (Unpaired Data)
    
    Numerator Mean:   .01406786
    Denominator Mean: .25610064
    Quotient:         .05493098
    95% CI:      .00944809–.20789796
    However, this doesn't make sense from my point of view. As far as I know the result for extreme point should be between the result of 0.00944809–0.20789796 (in my case). Could you please advise how should I treat this type of test taking into account my data? Perhaps I am using the wrong dependent variable, or the whole logic is wrong?

    On the other hand, I also tried to An alternative approach (for large samples) using the delta method;

    The command used based on my data and according to the attached link is the follows:
    Code:
    reg CreditRisk  adjlerner adjlerner2, noconstant
    
          Source |       SS       df       MS              Number of obs =    3124
    -------------+------------------------------           F(  2,  3122) =  430.76
           Model |  10.0026565     2  5.00132827           Prob > F      =  0.0000
        Residual |  36.2479737  3122  .011610498           R-squared     =  0.2163
    -------------+------------------------------           Adj R-squared =  0.2158
           Total |  46.2506302  3124  .014804939           Root MSE      =  .10775
    
    ------------------------------------------------------------------------------
           CreditRisk |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
       adjlerner |  -.1147687   .0198311    -5.79   0.000     -.153652   -.0758855
      adjlerner2 |   .1708729   .0164604    10.38   0.000     .1385986    .2031473
    ------------------------------------------------------------------------------
    Code:
    nlcom _b[adjlerner] / _b[adjlerner2]
    
    ------------------------------------------------------------------------------
           llrgl |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
           _nl_1 |  -.6716614   .0532586   -12.61   0.000    -.7760869   -.5672359
    Again the results do not make sense as the Conf. Interval is negative? Is this normal or again I am doing a wrong test.


    Many thanks in advance for your always precious help,

    Petko Bachvarov
Working...
X