Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Hypothesis testing between regression coefficients

    Hi everyone! So I created this regression table using the following commands
    Code:
    areg logincome logurbanisation Occupation Gender Age Marital Status Time if CASTE==n [aweight=weight], absorb(STATEID) cluster(STATE_DISTID)
    While n is[1,2,3,4] depending on the category (Brahmin, Upper Caste, OBC or Dalit). I need to test whether the coefficients of log(urbanisation) are statistically different from each other. Hence, H0: B(Brahmin)=B(Dalit); H1: B(Brahmin)!= B(Dalit) for example. Is there a way for STATA to perform these tests? If not, how do I go ahead with this analysis? Thank you in advance!
    Click image for larger version

Name:	Logincome.JPG
Views:	1
Size:	77.5 KB
ID:	1610952

  • #2
    See this thread here https://www.statalist.org/forums/for...ion-subsamples
    in post #3 I explain how you can do what you want to do.

    Comment


    • #3
      Hi Mr Kolev, thank you very much for the help. I ran a similar code as in the thread on post #3.
      However, I found that -areg- is not supported by -suest-. Could you please suggest another solution?
      Also, the dependent variables in each regression is logincome, the only thing that varies is "if CASTE=n"

      Adding to this, my actual null hypothesis would be:
      H0: B(Brahmin)=B(Upper Caste)=B(OBC)=B(Dalits)
      HI: if not
      Last edited by Yatharth Garg; 21 May 2021, 08:38.

      Comment


      • #4
        You did not read my post #3 at the above mentioned thread.

        The point of the post is that -regress- has an undocumented option -absorb- so you can fit the same model you re fitting now through -areg-, but through -regress-.

        Originally posted by Yatharth Garg View Post
        Hi Mr Kolev, thank you very much for the help. I ran a similar code as in the thread on post #3.
        However, I found that -areg- is not supported by -suest-. Could you please suggest another solution?
        Also, the dependent variables in each regression is logincome, the only thing that varies is "if CASTE=n"

        Comment


        • #5
          Apologies, I tried running the same model with -regress-. However, STATA returns that option absorb() is not allowed, r(198). Please advise!

          I have also made an edit to my post #3
          Originally posted by Yatharth Garg View Post

          Adding to this, my actual null hypothesis would be:
          H0: B(Brahmin)=B(Upper Caste)=B(OBC)=B(Dalits)
          HI: if not

          Comment


          • #6
            This is interesting, which Stata are you using?

            Under Stata 15.1 this works:

            Code:
            . sysuse auto, clear
            (1978 Automobile Data)
            
            . areg price mpg headroom, absorb(rep)
            
            Linear regression, absorbing indicators         Number of obs     =         69
            Absorbed variable: rep78                        No. of categories =          5
                                                            F(   2,     62)   =      10.60
                                                            Prob > F          =     0.0001
                                                            R-squared         =     0.2657
                                                            Adj R-squared     =     0.1946
                                                            Root MSE          =  2613.7617
            
            ------------------------------------------------------------------------------
                   price |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
            -------------+----------------------------------------------------------------
                     mpg |  -297.1542   65.40836    -4.54   0.000    -427.9037   -166.4048
                headroom |  -334.6746   426.4413    -0.78   0.436    -1187.119    517.7695
                   _cons |   13476.44    2201.67     6.12   0.000     9075.361    17877.51
            ------------------------------------------------------------------------------
            F test of absorbed indicators: F(4, 62) = 1.093               Prob > F = 0.368
            
            . regress price mpg headroom, absorb(rep)
            
            Linear regression, absorbing indicators         Number of obs     =         69
                                                            F(2, 62)          =      10.60
                                                            Prob > F          =     0.0001
                                                            R-squared         =     0.2657
                                                            Adj R-squared     =     0.1946
                                                            Root MSE          =     2613.8
            
            ------------------------------------------------------------------------------
                   price |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
            -------------+----------------------------------------------------------------
                     mpg |  -297.1542   65.40836    -4.54   0.000    -427.9037   -166.4048
                headroom |  -334.6746   426.4413    -0.78   0.436    -1187.119    517.7695
                   _cons |   13476.44    2201.67     6.12   0.000     9075.361    17877.51
            ------------------------------------------------------------------------------
            
            .
            Originally posted by Yatharth Garg View Post
            Apologies, I tried running the same model with -regress-. However, STATA returns that option absorb() is not allowed, r(198). Please advise!

            I have also made an edit to my post #3

            Comment


            • #7
              Still tell me which Stata you are using, I am interested under which version the above does not work, but you can also try this:

              Code:
              . _regress price mpg headroom if fore, absorb(rep)
              
              Linear regression, absorbing indicators         Number of obs     =         21
                                                              F(2, 16)          =       4.75
                                                              Prob > F          =     0.0240
                                                              R-squared         =     0.4071
                                                              Adj R-squared     =     0.2589
                                                              Root MSE          =       1912
              
              ------------------------------------------------------------------------------
                     price |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
              -------------+----------------------------------------------------------------
                       mpg |  -210.8535   70.52512    -2.99   0.009    -360.3601   -61.34696
                  headroom |  -66.90347   974.0123    -0.07   0.946    -2131.717     1997.91
                     _cons |   11573.76   2762.907     4.19   0.001     5716.661    17430.86
              ------------------------------------------------------------------------------
              
              . est sto fore
              
              . _regress price mpg headroom if !fore, absorb(rep)
              
              Linear regression, absorbing indicators         Number of obs     =         48
                                                              F(2, 41)          =       8.90
                                                              Prob > F          =     0.0006
                                                              R-squared         =     0.3306
                                                              Adj R-squared     =     0.2326
                                                              Root MSE          =     2793.5
              
              ------------------------------------------------------------------------------
                     price |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
              -------------+----------------------------------------------------------------
                       mpg |  -473.0364   114.3748    -4.14   0.000    -704.0209   -242.0519
                  headroom |   -535.417   536.7575    -1.00   0.324    -1619.421    548.5868
                     _cons |   17129.81   3365.443     5.09   0.000     10333.16    23926.46
              ------------------------------------------------------------------------------
              
              . est sto domestic
              
              . suest fore domestic
              
              Simultaneous results for fore, domestic
              
                                                              Number of obs     =         69
              
              --------------------------------------------------------------------------------
                             |               Robust
                             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
              ---------------+----------------------------------------------------------------
              fore_mean      |
                         mpg |  -210.8535   80.27714    -2.63   0.009    -368.1939   -53.51323
                    headroom |  -66.90347   567.3178    -0.12   0.906    -1178.826    1045.019
                       _cons |   11573.76   2523.328     4.59   0.000      6628.13     16519.4
              ---------------+----------------------------------------------------------------
              fore_lnvar     |
                       _cons |   15.11185   .2678884    56.41   0.000      14.5868     15.6369
              ---------------+----------------------------------------------------------------
              domestic_mean  |
                         mpg |  -473.0364   155.7149    -3.04   0.002     -778.232   -167.8408
                    headroom |   -535.417   421.3216    -1.27   0.204    -1361.192    290.3583
                       _cons |   17129.81   4012.619     4.27   0.000     9265.223     24994.4
              ---------------+----------------------------------------------------------------
              domestic_lnvar |
                       _cons |    15.8701   .2955829    53.69   0.000     15.29077    16.44943
              --------------------------------------------------------------------------------
              
              . test [fore_mean]mpg=[domestic_mean]mpg
              
               ( 1)  [fore_mean]mpg - [domestic_mean]mpg = 0
              
                         chi2(  1) =    2.24
                       Prob > chi2 =    0.1345
              
              .

              Comment


              • #8
                I am using STATA 13.1, which explains why I am unable to use the method you have suggested.
                From your post #7, I tried using -_regress- instead, but it returns the same error. Would you suggest a different approach?

                Comment


                • #9
                  Then you need to do what Clyde suggests in #2 on the same thread: https://www.statalist.org/forums/for...ion-subsamples

                  Read factor variables to understand what this does:

                  Code:
                  help fvvarlist
                  Originally posted by Yatharth Garg View Post
                  I am using STATA 13.1, which explains why I am unable to use the method you have suggested.
                  From your post #7, I tried using -_regress- instead, but it returns the same error. Would you suggest a different approach?

                  Comment


                  • #10
                    Thank you for your help, I really appreciate it.
                    Code:
                    areg logdefincome i.CASTE##(c.(logurbanisation) i.(OCCUPATION RO_3 RO5 mar time)), absorb(STATEID) cluster(STATE_DISTID)
                    Apologies, I overlooked something. It is working, thanks again.
                    Last edited by Yatharth Garg; 21 May 2021, 14:13. Reason: Issue resolved

                    Comment


                    • #11
                      Code:
                      test (CASTE#c.logurbanisation)Forward Caste 2 = (CASTE#c.logurbanisation) OBC 3 =(CASTE#c.logurbanisation) Dalit 4
                      I ran this code but it is returning an error unknown - function (), r(133). Also, I think to avoid collinearity STATA is not including all values of CASTE. It has 4 values- Brahmin, Upper Caste, OBC and Dalit. But to test my hypothesis, I will need the coefficients for each caste group.

                      Click image for larger version

Name:	CHOW.JPG
Views:	1
Size:	36.4 KB
ID:	1611088

                      Comment


                      • #12
                        Hi Joro, so I updated STATA to 16.1. And I am trying to run code you have suggested before, but I am still receiving this error, r(184), options absorb and cluster with different variables may not be combined.

                        I have ran the following two versions of the codes:
                        Code:
                        regress logdefincome logurbanisation RO_3 RO5 mar time if CASTE==1 [aweight=weight], absorb(STATEID) cluster(STATE_DISTID)
                        _regress logdefincome logurbanisation RO_3 RO5 mar time if CASTE==1 [aweight=weight], absorb(STATEID) cluster(STATE_DISTID)
                        But I am receiving the same error message while doing these. What could be the problem here?

                        Comment


                        • #13
                          Can you run the following code, and show exactly what you typed and exactly what Stata returned like I am doing below?

                          Code:
                          . regress price mpg headroom if fore, absorb(rep)
                          
                          Linear regression, absorbing indicators         Number of obs     =         21
                                                                          F(2, 16)          =       4.75
                                                                          Prob > F          =     0.0240
                                                                          R-squared         =     0.4071
                                                                          Adj R-squared     =     0.2589
                                                                          Root MSE          =       1912
                          
                          ------------------------------------------------------------------------------
                                 price |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                          -------------+----------------------------------------------------------------
                                   mpg |  -210.8535   70.52512    -2.99   0.009    -360.3601   -61.34696
                              headroom |  -66.90347   974.0123    -0.07   0.946    -2131.717     1997.91
                                 _cons |   11573.76   2762.907     4.19   0.001     5716.661    17430.86
                          ------------------------------------------------------------------------------
                          
                          . est sto fore
                          
                          . regress price mpg headroom if !fore, absorb(rep)
                          
                          Linear regression, absorbing indicators         Number of obs     =         48
                                                                          F(2, 41)          =       8.90
                                                                          Prob > F          =     0.0006
                                                                          R-squared         =     0.3306
                                                                          Adj R-squared     =     0.2326
                                                                          Root MSE          =     2793.5
                          
                          ------------------------------------------------------------------------------
                                 price |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                          -------------+----------------------------------------------------------------
                                   mpg |  -473.0364   114.3748    -4.14   0.000    -704.0209   -242.0519
                              headroom |   -535.417   536.7575    -1.00   0.324    -1619.421    548.5868
                                 _cons |   17129.81   3365.443     5.09   0.000     10333.16    23926.46
                          ------------------------------------------------------------------------------
                          
                          . est sto domestic
                          
                          . suest fore domestic, cluster(rep)
                          
                          Simultaneous results for fore, domestic
                          
                                                                          Number of obs     =         69
                          
                                                              (Std. Err. adjusted for 5 clusters in rep78)
                          --------------------------------------------------------------------------------
                                         |               Robust
                                         |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                          ---------------+----------------------------------------------------------------
                          fore_mean      |
                                     mpg |  -210.8535   25.53476    -8.26   0.000    -260.9007   -160.8063
                                headroom |  -66.90347   718.5178    -0.09   0.926    -1475.172    1341.365
                                   _cons |   11573.76   2049.311     5.65   0.000     7557.186    15590.34
                          ---------------+----------------------------------------------------------------
                          fore_lnvar     |
                                   _cons |   15.11185   .1825798    82.77   0.000       14.754     15.4697
                          ---------------+----------------------------------------------------------------
                          domestic_mean  |
                                     mpg |  -473.0364   196.1553    -2.41   0.016    -857.4938   -88.57902
                                headroom |   -535.417   348.7937    -1.54   0.125     -1219.04    148.2062
                                   _cons |   17129.81   4629.365     3.70   0.000     8056.423     26203.2
                          ---------------+----------------------------------------------------------------
                          domestic_lnvar |
                                   _cons |    15.8701   .1212165   130.92   0.000     15.63252    16.10768
                          --------------------------------------------------------------------------------
                          
                          . test [fore_mean]mpg=[domestic_mean]mpg
                          
                           ( 1)  [fore_mean]mpg - [domestic_mean]mpg = 0
                          
                                     chi2(  1) =    1.75
                                   Prob > chi2 =    0.1862
                          
                          .

                          Comment


                          • #14
                            Hi, Thank you I am able to get these results now. I overlooked that I could use "cluster()" with suest. These are my results:
                            I just wanted to confirm another doubt. Is this test known as chow test? Is it also applicable for regression models for different groups (CASTE) within the same panel dataset (two time periods)??
                            Code:
                            . reg logdefincome logurbanisation OCCUPATION RO_3 RO5 mar time if CASTE==1 [aweight=weight], absorb(STATEID)
                            (sum of wgt is 15,905,197.516266)
                            
                            Linear regression, absorbing indicators         Number of obs     =      3,545
                                                                            F(6, 3508)        =     145.46
                                                                            Prob > F          =     0.0000
                                                                            R-squared         =     0.2806
                                                                            Adj R-squared     =     0.2733
                                                                            Root MSE          =     .85863
                            
                            ---------------------------------------------------------------------------------
                               logdefincome |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                            ----------------+----------------------------------------------------------------
                            logurbanisation |   .2391378   .0245798     9.73   0.000     .1909457      .28733
                                 OCCUPATION |  -.0124496   .0004776   -26.07   0.000     -.013386   -.0115132
                                       RO_3 |  -.0233625   .0422432    -0.55   0.580    -.1061861    .0594612
                                        RO5 |   .0033383   .0013873     2.41   0.016     .0006184    .0060582
                                        mar |   .0452835   .0426309     1.06   0.288    -.0383004    .1288674
                                       time |   .1676947   .0296392     5.66   0.000     .1095828    .2258066
                                      _cons |   11.88449   .0702837   169.09   0.000     11.74668    12.02229
                            ---------------------------------------------------------------------------------
                            
                            . est sto Brahmin
                            
                            . reg logdefincome logurbanisation OCCUPATION RO_3 RO5 mar time if CASTE==2 [aweight=weight], absorb(STATEID)
                            (sum of wgt is 54,320,713.348907)
                            
                            Linear regression, absorbing indicators         Number of obs     =     11,398
                                                                            F(6, 11361)       =     444.65
                                                                            Prob > F          =     0.0000
                                                                            R-squared         =     0.2719
                                                                            Adj R-squared     =     0.2696
                                                                            Root MSE          =     .86149
                            
                            ---------------------------------------------------------------------------------
                               logdefincome |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                            ----------------+----------------------------------------------------------------
                            logurbanisation |   .2580549    .014159    18.23   0.000     .2303008     .285809
                                 OCCUPATION |  -.0126262   .0002914   -43.33   0.000    -.0131974   -.0120549
                                       RO_3 |   .2005149   .0204225     9.82   0.000     .1604832    .2405466
                                        RO5 |   .0022378   .0007984     2.80   0.005     .0006728    .0038028
                                        mar |  -.1343825   .0247072    -5.44   0.000    -.1828129    -.085952
                                       time |   .2353157   .0167395    14.06   0.000     .2025035     .268128
                                      _cons |   11.72298   .0398381   294.27   0.000      11.6449    11.80107
                            ---------------------------------------------------------------------------------
                            
                            . est sto UC
                            
                            . reg logdefincome logurbanisation OCCUPATION RO_3 RO5 mar time if CASTE==3 [aweight=weight], absorb(STATEID)
                            (sum of wgt is 164,647,900.89105)
                            
                            Linear regression, absorbing indicators         Number of obs     =     30,017
                                                                            F(6, 29980)       =     638.23
                                                                            Prob > F          =     0.0000
                                                                            R-squared         =     0.2020
                                                                            Adj R-squared     =     0.2011
                                                                            Root MSE          =     .81445
                            
                            ---------------------------------------------------------------------------------
                               logdefincome |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                            ----------------+----------------------------------------------------------------
                            logurbanisation |   .2515227   .0083876    29.99   0.000     .2350827    .2679627
                                 OCCUPATION |   -.008117   .0002117   -38.34   0.000     -.008532   -.0077021
                                       RO_3 |   .1855754   .0108907    17.04   0.000     .1642291    .2069216
                                        RO5 |  -.0011359   .0004454    -2.55   0.011    -.0020089    -.000263
                                        mar |  -.1450388   .0148359    -9.78   0.000    -.1741178   -.1159597
                                       time |   .2569152   .0097133    26.45   0.000     .2378768    .2759537
                                      _cons |   11.29003   .0253479   445.40   0.000     11.24035    11.33971
                            ---------------------------------------------------------------------------------
                            
                            . est sto OBC
                            
                            . reg logdefincome logurbanisation OCCUPATION RO_3 RO5 mar time if CASTE==4 [aweight=weight], absorb(STATEID)
                            (sum of wgt is 137,986,090.04941)
                            
                            Linear regression, absorbing indicators         Number of obs     =     24,288
                                                                            F(6, 24253)       =     467.46
                                                                            Prob > F          =     0.0000
                                                                            R-squared         =     0.2242
                                                                            Adj R-squared     =     0.2231
                                                                            Root MSE          =     .74137
                            
                            ---------------------------------------------------------------------------------
                               logdefincome |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                            ----------------+----------------------------------------------------------------
                            logurbanisation |   .1881318   .0084703    22.21   0.000     .1715295    .2047341
                                 OCCUPATION |  -.0053109   .0002373   -22.38   0.000     -.005776   -.0048458
                                       RO_3 |   .1522171   .0107964    14.10   0.000     .1310555    .1733787
                                        RO5 |  -.0003801   .0004439    -0.86   0.392    -.0012502      .00049
                                        mar |  -.1621373   .0149063   -10.88   0.000    -.1913545   -.1329201
                                       time |   .3381171   .0098089    34.47   0.000      .318891    .3573431
                                      _cons |   10.88021   .0268017   405.95   0.000     10.82768    10.93275
                            ---------------------------------------------------------------------------------
                            
                            . est sto Dalit
                            
                            . suest Brahmin UC OBC Dalit, vce(cluster STATE_DISTID)
                            
                            Simultaneous results for Brahmin, UC, OBC, Dalit
                            
                                                                            Number of obs     =     69,248
                            
                                                        (Std. Err. adjusted for 367 clusters in STATE_DISTID)
                            ---------------------------------------------------------------------------------
                                            |               Robust
                                            |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                            ----------------+----------------------------------------------------------------
                            Brahmin_mean    |
                            logurbanisation |   .2391378   .0761168     3.14   0.002     .0899516     .388324
                                 OCCUPATION |  -.0124496   .0007918   -15.72   0.000    -.0140016   -.0108977
                                       RO_3 |  -.0233625   .0556035    -0.42   0.674    -.1323434    .0856185
                                        RO5 |   .0033383   .0020592     1.62   0.105    -.0006977    .0073743
                                        mar |   .0452835   .0628542     0.72   0.471    -.0779085    .1684755
                                       time |   .1676947   .0518206     3.24   0.001     .0661282    .2692612
                                      _cons |   11.88449   .1462376    81.27   0.000     11.59786    12.17111
                            ----------------+----------------------------------------------------------------
                            Brahmin_lnvar   |
                                      _cons |  -.3048372    .049098    -6.21   0.000    -.4010676   -.2086068
                            ----------------+----------------------------------------------------------------
                            UC_mean         |
                            logurbanisation |   .2580549   .0830582     3.11   0.002     .0952638     .420846
                                 OCCUPATION |  -.0126262   .0007136   -17.69   0.000    -.0140247   -.0112276
                                       RO_3 |   .2005149   .0441338     4.54   0.000     .1140142    .2870156
                                        RO5 |   .0022378   .0016129     1.39   0.165    -.0009234     .005399
                                        mar |  -.1343825   .0326064    -4.12   0.000    -.1982898   -.0704751
                                       time |   .2353157    .053953     4.36   0.000     .1295697    .3410617
                                      _cons |   11.72298   .1299617    90.20   0.000     11.46826     11.9777
                            ----------------+----------------------------------------------------------------
                            UC_lnvar        |
                                      _cons |  -.2981787   .0535308    -5.57   0.000    -.4030972   -.1932602
                            ----------------+----------------------------------------------------------------
                            OBC_mean        |
                            logurbanisation |   .2515227   .0626357     4.02   0.000      .128759    .3742864
                                 OCCUPATION |   -.008117   .0005712   -14.21   0.000    -.0092365   -.0069975
                                       RO_3 |   .1855754   .0198042     9.37   0.000     .1467598     .224391
                                        RO5 |  -.0011359   .0008889    -1.28   0.201    -.0028782    .0006063
                                        mar |  -.1450388   .0282333    -5.14   0.000    -.2003751   -.0897024
                                       time |   .2569152   .0306815     8.37   0.000     .1967807    .3170498
                                      _cons |   11.29003   .1190317    94.85   0.000     11.05673    11.52333
                            ----------------+----------------------------------------------------------------
                            OBC_lnvar       |
                                      _cons |  -.4104783   .0328025   -12.51   0.000      -.47477   -.3461867
                            ----------------+----------------------------------------------------------------
                            Dalit_mean      |
                            logurbanisation |   .1881318   .0805667     2.34   0.020      .030224    .3460396
                                 OCCUPATION |  -.0053109   .0008276    -6.42   0.000    -.0069329   -.0036889
                                       RO_3 |   .1522171   .0248261     6.13   0.000     .1035588    .2008754
                                        RO5 |  -.0003801   .0009132    -0.42   0.677      -.00217    .0014099
                                        mar |  -.1621373   .0315722    -5.14   0.000    -.2240177   -.1002569
                                       time |   .3381171   .0401445     8.42   0.000     .2594353    .4167988
                                      _cons |   10.88021   .1691854    64.31   0.000     10.54862    11.21181
                            ----------------+----------------------------------------------------------------
                            Dalit_lnvar     |
                                      _cons |  -.5985151   .0501537   -11.93   0.000    -.6968145   -.5002157
                            ---------------------------------------------------------------------------------
                            
                            . test [Brahmin_mean]logurbanisation=[UC_mean]logurbanisation=[OBC_mean]logurbanisation=[Dalit_mean]logurbanisation
                            
                             ( 1)  [Brahmin_mean]logurbanisation - [UC_mean]logurbanisation = 0
                             ( 2)  [Brahmin_mean]logurbanisation - [OBC_mean]logurbanisation = 0
                             ( 3)  [Brahmin_mean]logurbanisation - [Dalit_mean]logurbanisation = 0
                            
                                       chi2(  3) =    1.01
                                     Prob > chi2 =    0.7987
                            Last edited by Yatharth Garg; 22 May 2021, 10:29. Reason: Repetition

                            Comment


                            • #15
                              Very good then, so my procedure works under Stata 16 as well.

                              Yes, this is called a Chow test.

                              I did not understand this question "Is it also applicable for regression models for different groups (CASTE) within the same panel dataset (two time periods)," the answer is probably Yes, but if you want ask again, and ask specifically what you want to do, and not at such great level of generality.

                              In general the Chow test of stability of coefficients can be applied to any type of data, including panel data.

                              Comment

                              Working...
                              X